AC/I(19-20).2.RUS7

S. P. Mandali's Ramnarain Ruia Autonomous College (Affiliated to Mumbai University)

Syllabus for

Program: Bachelor's Degree in Life Science

Program Code: RUSLSc

(Credit Based Semester and Grading System for Academic year 2019–2020)

PROGRAM OUTCOMES

PO	PO Description
	A student completing Bachelor's Degree in Life Science
	program will be able to:
PO 1	Demonstrate an understanding of biological systems across
	microorganisms, plants and animals. To develop necessary
	laboratory skills and analytical methods.
PO 2	Employ critical thinking and scientific knowledge to design
	experiments, record observations, analyse data and interpret
	results. They can further build their career in research.
PO 3	Create an awareness of environmental issues, biological
	diversity, and how we can make a positive impact on it.
PO 4	Inculcate scientific temperament and generate problems
	solving approaches in students when they integrate themselves
	in the larger society.
PO 5	Develop necessary laboratory skills and analytical methods.

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in the subject of
	Life Science will be able to:
PSO1	To be able to describe the biomolecules and metabolic
	processes, compare developmental processes and physiological
	systems in plants and animals, neuroendocrine system, short
	term and long term memory, learning and behaviour,
	neurological disorders, biological evolution, human evolution
	of thought process, which allows for curiosity, and enhances
	learning process ahead.
PSO2	To be able to describe interspecific interactions in the
	ecosystem, Plant Tissue Culture techniques and its significance
	in agriculture, germplasm conservation and secondary
	metabolites, and Animal Tissue Culture techniques,
	Fermentation Technology and its role in industry and society
PSO3	To be able to explain DNA Cloning, use of cloning vectors like
	E.coli plasmids, cosmids, phagemids, viral vectors, significance of
	restriction enzymes, apply Mendel's laws, gene regulation in
	prokaryotes and eukaryotes, defense mechanisms in plants and
	animals, innate and adaptive immune system, and its disruptions
200	in the form of allergies, autoimmune diseases and
	immunodeficiency disorders. applications of Monoclonal
60.	antibodies in cancer
PSO4	Apply Biostatistics to analyse, Probable Chance of Occurrence,
	Normal Population, Student's t-test, Correlation and Regression
	analysis, Chi-Square test, data analysis for project work
PSO5	Skills-Perform assays to identify, purify, quantify, immobilize

PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to work independently as well as lead a team and tehical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be to write SOPs for instruments,		unataina/an-mana taalanimaa lila Cantaifa ati u
protocols to handle preserved animals, working in aseptic conditions, use and maintaining of diagnostic kits, pedigree analysis in humans, karyotyping in plants PSO6 Skills- Apply Bioinformatics to understand the evolution of macromolecules, the genomic status of organisms, to compare the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		proteins/enzymes using techniques like Centrifugation,
PSO6 Skills-Apply Bioinformatics to understand the evolution of macromolecules, the genomic status of organisms, to compare the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		
PSO6 Skills- Apply Bioinformatics to understand the evolution of macromolecules, the genomic status of organisms, to compare the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		
PSO6 Skills- Apply Bioinformatics to understand the evolution of macromolecules, the genomic status of organisms, to compare the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		conditions, use and maintaining of diagnostic kits, pedigree
macromolecules, the genomic status of organisms, to compare the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		analysis in humans, karyotyping in plants
the phylogenetic relationships, to analyse nucleotide and protein sequences, to annotate nucleotide sequences and derive structure function relationship. PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team	PSO6	Skills- Apply Bioinformatics to understand the evolution of
PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		macromolecules, the genomic status of organisms, to compare
PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		the phylogenetic relationships, to analyse nucleotide and protein
PSO7 Environment and Sustainability- to analyse the local biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		sequences, to annotate nucleotide sequences and derive
biodiversity at residential sites of students and the changes occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		structure function relationship.
occurring in the biodiversity and to conserve the same, awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team	PSO7	Environment and Sustainability- to analyse the local
awareness about implementation of Laws Regulations, citizens awareness to oppose under the aegis of NGO Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		biodiversity at residential sites of students and the changes
PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		occurring in the biodiversity and to conserve the same,
PSO8 Ethics- awareness of plagiarism in scientific work, acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		awareness about implementation of Laws Regulations, citizens
acknowledging/ citing the work, lab ethics in handling biological materials and chemicals, to be able to apply professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		awareness to oppose under the aegis of NGO
professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team	PSO8	Ethics- awareness of plagiarism in scientific work,
professional and ethical principles, minimize waste and ethical waste disposal PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		acknowledging/ citing the work, lab ethics in handling
PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		biological materials and chemicals, to be able to apply
PSO9 Individual and Team Work- to be able to work independently as well as lead a team and be a team player, PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		professional and ethical principles, minimize waste and ethical
PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team		waste disposal
PSO10 Communication skills- to be able to communicate clearly through presentations as well as document, write effective reports or communicate and work in a team	PSO9	Individual and Team Work- to be able to work independently as
through presentations as well as document, write effective reports or communicate and work in a team	00)	well as lead a team and be a team player,
reports or communicate and work in a team	PSO10	Communication skills- to be able to communicate clearly
		through presentations as well as document, write effective
PSO11 Project Management- to be able to write SOPs for instruments,		reports or communicate and work in a team
	PSO11	Project Management- to be able to write SOPs for instruments,

	design experiments, analyse data, work in a team, a scientific way of thinking, a diverse approach to scientific enquiry towards an idea.
PSO12	Life Long Learning- to be able to learn independently and adapt to changing needs of the society
	1166
	CO
	RUIIO
.0	
3/1/1	
Raimus	
<i>Ballul</i>	
P. Silling	

PROGRAM OUTLINE

YEAR	SE M	COURSE CODE	COURSE TITLE	CREDI TS
FYBS	I	RUSLSc10	Molecular and Cellular studies in	2
c		1	Life Sciences I	000
FYBS c	I	RUSLSc102	Physiological systems, Genetics and Ecology I	2
FYBS c	I	RUSLScP101	Practicals in Molecular and Cellular studies in Life Sciences I	1
FYBS C	I	RUSLScP102	Practicals in Physiological systems, Genetics and Ecology I	1
FYBS c	II	RUSLSc20	Molecular and Cellular studies in Life Sciences II	2
FYBS c	II	RUSLSc20	Physiological systems, Genetics and Ecology II	2
FYBS c	ıı	RUSLScP20	Practicals in Molecular and Cellular studies in Life Sciences II	1
FYBS c	II	RUSLScP20	Practicals in Physiological systems, Genetics and Ecology II	1
SYBS c	III	RUSLSc30	Physiological Systems in Plants and Animals-I	2


~~~~		Dilar a 20	D: 1 . 1 . 1	
SYBS	III	RUSLSc30	Biochemical Approach to Life	2
c		2	Processes in Plants and Animals-I	
SYBSc	III	RUSLSc30	Evolutionary Biology, Biostatistics	2
		3	and Bioinformatics in Population	
			Studies-I	.0.
SYBSc	III		Practicals in Physiological	2
		RUSLScP30	Systems in Plants and Animals-I	60
		1		
SYBSc	III		Practicals in Biochemical	1
		RUSLScP30	Approach to Life Processes in	
		2	Plants and Animals- I	
			D. I. I. I. D. I.	
SYBSc	III		Practicals in Evolutionary Biology,	1
		RUSLScP30	Biostatistics and Bioinformatics in	
		3	Population Studies- I	
SYBSc	IV	RUSLSc40	Physiological Systems in Plants	2
		1	and Animals-II	
SYBSc	IV	RUSLSc40	Biochemical Approach to Life	2
		2	Processes in Plants and Animals-II	
SYBSc	IV	RUSLSc40	Evolutionary Biology, Biostatistics	2
		3	and Bioinformatics in Population	
09/1			Studies-II	
SYBSc	IV		Practicals in Physiological	1
		RUSLScP40	Systems in Plants and Animals-II	
		1		
SYBSc	IV		Practicals in Biochemical	1
		RUSLScP40	Approach to Life Processes in	



		2	Plants and Animals- II	
SYBSc	IV	RUSLScP40	Practicals in Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies- II	1
TYBSc	V	RUSLSc50	Genetics and Immunology-I	2.5
TYBSc	V	RUSLSc50	Developmental Biology and Neurosciences- I	2.5
TYBSc	V	RUSLSc50	Biotechnology and Genetic Engineering- I	2.5
TYBSc	V	RUSLSc50	Ecology, Conservation Biology, Assessment and Management- I	2.5
TYBSc	V	RUSLScP50	Practicals in Genetics and Immunology-I	1.5
TYBSc	V	RUSLScP50	Practicals in Developmental Biology and Neurosciences – I	1.5
TYBSc	V	RUSLScP50	Practicals in Biotechnology and Genetic Engineering – I	1.5
TYBSc	V	RUSLScP50	Practicals in Ecology,  Conservation Biology, Assessment and Management – I	1.5
TYBSc	VI	RUSLSc60	Genetics and Immunology- II	2.5



		1		
TYBSc	VI	RUSLSc60	Developmental Biology and	2.5
		2	Neurosciences- II	
TYBSc	VI	RUSLSc60	Biotechnology and Genetic	2.5
		3	Engineering- II	60
TYBSc	VI	RUSLSc60	Ecology, Conservation Biology,	2.5
		4	Assessment and Management- II	
TYBSc	VI		Practicals in Genetics and	1.5
		RUSLScP60	Immunology – II	
		1		
TYBSc	VI		Practicals in Developmental	1.5
		RUSLScP60	Biology and Neurosciences – II	
		2		
TYBSc	VI		Practicals in Biotechnology and	1.5
		RUSLScP60	Genetic Engineering – II	
		3		
TYBSc	VI	2	Practicals in Ecology,	1.5
	(9)	RUSLScP60	Conservation Biology, Assessment	
		4	and Management – II	



Course	PS O1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO1 0	PSO1 1	PSO1 2	Tests/ Practical s
RUSLSc 101	CO 1,2, 3,4, 5,								group prese ntatio n	Prese ntatio ns			Assignm ents
RUSLSc 102			CO1, 2,3							Prese ntatio ns			Assignm ents
RUSLSc 201	CO 1,2, 3				CO4				group prese ntatio n	Prese ntatio ns		16	Assignm ents
RUSLSc 202					CO1,								
RUSLSc 301					CO1, 2,3,4					Prese ntatio ns			
RUSLSc 302	CO 5,6				CO1, 2,3,4			~C		Prese ntatio ns		Self study	Assignm ents
RUSLSc 303							_× C						
RUSLSc 401			CO3,				7			Prese ntatio ns		Self study	Assignm ents
RUSLSc 402	CO 1,2					5.				Prese ntatio ns		Self study	Assignm ents
RUSLSc 403						CO4, 5,6							Assignm ents
RUSLSc 501			CO3, 4,5,6							Prese ntatio ns			Assignm ents
RUSLSc 502	~		7										
RUSLSc 503	9	CO1, 2							group prese ntatio n	Prese ntatio ns			Assignm ents
RUSLSc 504									Case Study				
RUSLSc 601			CO4, 5,6							Prese ntatio ns			Assignm ents
RUSLSc 602									Grou p				



						Discu ssion				
RUSLSc 603	CO2	CO1				Grou p proje ct	prese ntatio n	Proje t work		Practical s
RUSLSc 604							Case Study	Proje ct Work		
									16	200
							111			
						2				
					100					
			6	J,C	inoi					
			A	J.C						
			S. P.	J.C						
				J.C						
			S. P.	J.C						
20										
20										



#### **Course Code: RUSLSc101**

## Course Title: Molecular and Cellular studies in Life Sciences I Academic year 2019-20

#### **COURSE OUTCOMES:**

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	To explain structures and functions of amino acids, proteins, nucleic acids, nucleus and nuclear membrane, giant chromosomes, lampbrush chromosomes, functions of cytoskeletal elements.
CO2	To describe plant cell wall, bacterial cell wall and fungal cell wall, eukaryotic and prokaryotic cells, different microbial media, microbial preservation techniques.
CO3	To classify amino acids, proteins in different ways
CO4	To differentiate between essential nonessential amino acids, complete, incomplete proteins, different forms of DNA, Distinguish between different phases in cell cycle and cell division.
CO5	To compare different cell wall types, compare different phases of microbial growth

**Course Code: RUSLSc102** 



## Course Title: Physiological systems, Genetics and Ecology I Academic year 2019-20

#### **COURSE OUTCOMES:**

COURSE OUTCOME	DESCRIPTION
OUTCOME	100
	Students will gain insights about following;
CO 1	Students will learn comparative physiological systems from lower to higher phyla in animals and they will also study the parallel systems in plants eg. Respiration in animals and plants.

#### **DETAILED SYLLABUS**

Course	Uni	Course/ Unit Title	Credits/
Code/ Unit	t		Lectures
		F.Y.B.Sc. LIFE SCIENCES (Theory)	2
			Credits/45
			Lectures
RUSLSc 101	10	Molecular and Cellular studies in Life Sciences	
		I	
	I	Biomolecules within living cells I	15
		Physiological Role of water: Structure of water	Lectures
		molecule, ionic interactions, ionic product of	
00		water, concept of pH, buffers and its types,	
		Henderson Hasselbalch equation, significance of	
		water.	
		Amino acids: Classification based on R groups,	
		essential, semi essential and non essential amino	
		acids.	
		<b>Proteins:</b> Classification, Functions, Incomplete and	
		complete proteins, Structural organization- Primary,	



		Secondary, Tertiary, Quaternary levels. One example	
		of each.	
		Nucleic acids:	
		Structure of nucleosides and nucleotides,	
		structure of nucleic acids (A,B,Z forms); the	
		structure of DNA lends itself to its function as	
		hereditary molecule.	
	II	Features of Eukaryotic and Prokaryotic cells	15
		Microscopy:	Lectures
		Prokaryotic cell structure. E.g. <i>E</i> .	6,0
		coli. Eukaryotic cell structure. E.g. Yeast	
		(Unicellular)	
		Evolutionary origin of organelles; the	
		endosymbiont hypothesis -E.g., Chloroplast,	
		Mitochondria.	
		Virus:	
		Virus structure, Life cycle of bacteriophage	
		(Lytic and Lysogenic), Plant and Animal virus	
		(One example: TMV and Adeno virus, Corona	
		virus).	
		Microbial growth:	
		Influencing factors, culture media (enriched and	
		minimal), isolation, preservation, life cycle and	
		growth curve of <i>E.coli</i> .	
		Cell division:	
		Mitosis and Meiosis with phases in cell division	
		with significance.	
	III	Cytoskeletal elements and cell wall	15
		Nucleus:	Lectures
		Structure and Chromosome packaging,	
0,0,		lampbrush and polytene chromosome.	
		Cytoskeletal elements:	
		Microfilaments: Structure and function in	
		striated muscle fibers. Role in cytoplasmic	
		streaming in plants.	
		Microtubules: Structure as in cilia or in flagella,	
		mechanism in movement. Function in mitotic	
		spindle.	
		~ b	



	negative. Fungal cell wall	
	Plant cell wall: Primary and secondary	
RUSLSc1 02	Physiological systems, Genetics and Ecology I	2 Credits/45 Lectures
I	Types of Nutrition and Nutritional	15
	adaptations for different habitats	Lectures
	Autotrophic nutrition – Importance of	
	photosynthesis in plants and in autotrophic	
	prokaryotes.	
	Macro and micro nutrients for plants.	
	Insectivorous plants	
	Heterotrophic nutrition – ex. holozoic,	
	saprophytic (fungi) and parasitic (Cuscuta,	
	Tapeworm) i) fluid feeders (ex. Mosquito or Housefly)	
	ii) microphagous (ex. Amoeba or Paramecium)	
	iii) macrophagous (mammals)	
	Digestive systems of mammals	
	Human and Ruminant Digestion	
	Evolutionary adaptation associated with diet eg.	
• .	dental, stomach and intestine.	
П	Mendelian Inheritance:	15
2 shipsilo	Concept of homozygous, heterozygous, phenotype, genotype, alleles; Mendel's Laws and Mono & Dihybrid ratios with problems, chi square –for 3:1 and 1:1 ratios. Use sickle cell anemia as an example to explain the concept of genes.	Lectures
	Chromosomal inheritance:	
	Sutton's hypothesis, sex-linked inheritance,	
	study of human pedigrees (e.g. Sex linked	
	dominant and recessive; autosomal dominant & recessive)	



	<b>Translocation in plants:</b> Transport of wa	
	and inorganic solutes – transpiration, stom	ıatal
	function and regulation, role of proton pur	nps
	and factors affecting ascent of xylem sap.	
	Transport of organic solutes – mechanism	and
	its regulation.	
	Circulation in animals:	
	Animals without a circulatory system eg.	Hydra
	and jellyfish	60
	Open and closed circulatory system eg. in	isects
	vs worms.	
	Vertebrate circulatory system:	(9)
	Heart; single and double circulation. Speci	ific
	adaptations – mammals at high altitudes as	
	diving mammals.	
	Cardiovascular system in health and disease	se –
	hypertension and atherosclerosis and the re	
	exercise.	
	Respiration and Gaseous Exchange:	
	Gaseous exchange in small animals (acros	SS
	surface) and cutaneous respiration in frogs	<u> </u>
	Gaseous exchange in plants – Stomata and	1
	Pneumatophores.	
	Gaseous exchange in invertebrates – trach	ea in
	insects, book lungs in scorpion	
	Gaseous exchange in vertebrates – gills an	ıd
	lungs	
	PRACTICALS	2 Credits
		Total 45
		lectures
RUSLScP	Practicals in Molecular and Cellular stud	
101	Life Sciences - I (PRACTICAL -	<u>I)</u>
	1.Good Laboratory practices:	
	An introduction to Laboratory discipline a	
	GLP, SOP (in detail) and Instrument safet	•
	GLP Handling Biological/ Blood and haza	ırdous
	chemicals.	
	Documentation and validation, Industry pu	arpose.
	Survey of the organization of laboratory	



instruments, chemicals and glassware. Lab safety (instruments and chemicals) [incorporated into every practical].

### **2.Introduction to Elementary microbial techniques:**

Sterilization & Disinfection Air microflora

Microbial Staining technique and Microscopy Comparative study of samples from 5 different sources to check gram positive and gram negative bacteria - Buttermilk, tap water, sewage water, food Item, soil, rotten – effect of heat using

Monochrome Staining Gram Staining.

Cell wall staining

### 3. Micrometry Eukaryotic cells and Microscopic measurements:

Staining of onion peel / plant cells to reveal structure and organization of cells
Micrometry - Using the microscope to measure size of cells / nucleus/ different pollen grains.

### 4.Effect of temp on movements in plants and animals using any system:

Cytoplasmic streaming in Vallisneria and Hydrilla

Culturing and observation of feeding in Paramoecium from Hay infusion

**5.Preparation of solutions** of a given chemical compound Molar and percentage solutions – Concept and calculations only.

#### 6. Molecular biology and Biochemistry:

Isolation and Detection of DNA (by observing spools) from Onion or any other DPA detection optional / demonstration.

#### 7. Histochemistry:

Localization of Proteins and Nucleic acids from the suitable system

Proteins of peas / cockroach muscles
DNA and RNA from onion peel using methyl



	green pyronin staining.  8.Instrumentation and techniques:	
	Calibration of the pH Meter with standard buffer pH4 and pH9.2 as per GLP Checking of pH for common foodstuff e.g. Milk/cola drink/Lime juice or any other relevant sample.  9.Microscopy:	~C
	Principles of light and Fluorescent Microscopy, Electron Microscopy-Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Study of Electron Micrographs as listed	160
	below: Mitochondria Lysosomes:Basement membrane/ junctions Cilia: Both normal and pathological 10.Cell division:	
	Determining effect of colchicine / mitotic inhibitor /environmental pollutant / mitotic activator on mitosis in onion root tip by calculating mitotic index  11.Meiosis from <i>Tradescantia</i> (demonstration/ Photograph)	
RUSLScP 102	Practicals in Physiological systems, Genetics and Ecology - I ((Practical -II)	2 Credits Total 45 lectures
6.9Will	1.Study of Plant Tissues:  Temporary mounting/ observation of permanent slides of Mounting of Dicot /Monocot Stem,Root.  2.Hematology: Differential count of WBCs using Giemsa/ Lieishman stain.  3. Study of Mouth parts in insect and	
	Comparative assessment of mouth parts: Preparation of fresh mount of; Piercing and sucking type- eg Mosquito Sponging type- eg Housefly	



Biting and Chewing type- eg Cockroach (if available  4. Collection of blood group information from family and construction of pedigree charts.  5. Diversity of Life: Five Kingdom Classification (Outline)  6. Soil analysis: Edaphic factors
Texture, water content, soil organisms
7. Water Quality - Effect of temperature, light,
pH
8. Field study to at least one site: To
understand flora and fauna, visit a national park
a century or pond or lake or marine ecosystem.
To prepare a field report to be duly certified
Any Industrial Visit or Invited Guest lecture
with reference to FYBSc Life-Science Syllabus

#### **References:**

	REFERENCES:
	RUSLSc 101
1.	Cell Biology, Genetics, Molecular biology, Evolution and Ecology P.S. Verma and V.K. Agarwal Publishers : S. Chand and Co.Ltd., (2009)
2.	Becker's World of the Cell: International Edition – 8 th Edition  Jeff Hardin Gregory Paul Bertoni, Lewis J. Kleinsmith Publishers: Pearson Dorling Kinderflay India / Pearson India (2011)
3.	Life: The Science of Biology,  William K Purves, D. Sadava, G. H. Orians and H.C. Heller 7th Edn. (2003) Sinauer Associates
4.	Molecular Cell Biology – 7 th Edition Ed: Harvey Lodish, Arnold Berk, Chris A. Kaiser and 5 more (2012) Pub: Macmillan



5.	Molecular Biology of the Cell Ed: Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter 5th Edition (2007) or 6 th Edition (2014) Pub: Garland Science
6.	Essential Cell Biology Ed: Bruce Alberts, Dennis Bray, Karen Hopkin and Alexander Johnson (2009) 3rd Edition Pub: Garland Science.
7.	Fundamentals of Biochemistry  Ed: Voet. and Voet 4th edition, (2010) Pub: John Wiley and Sons
8.	Lehninger Principles of Biochemistry Ed: D.L. Nelson, 5th edition, (2008) Pub: CBS Publishers and Distributors.
9.	Principles of Biochemistry  Ed: Zubay G.L, Parson W.W. and Vance D.E. 1st edition (1995) Pub: W. C. Brown.



	RUSLSc 102
1.	Biological Science, Taylor, Green and Stout., 3rd edn. Ed. R. Soper .(2005) Cambridge Univ. press.
2.	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al (2000,)
	Pub: W. H. Freeman(London) Seventh Edition
3.	Comparative Animal Physiology, Philip C.Withers,(1992), Saunders College Publishing House.
4.	Biology A Modern Introduction, B.S.Beckett (1994), GCSE Edn. Oxford Univ. Press.
5.	Essentials of Human Genetics, S.M.Bhatnagar, M.L.Kothari & L.A.Mehta, (1994),
	Orient Longman's Publication.
6.	Cell Biology, Genetics, Molecular biology, Evolution and Ecology – P.S. Verma and V.K. Agarwal (2009)
	Publishers : S. Chand and Co.Ltd.,
7.	Biological Science : - Scott Freeman (2004),
	Pub: Benjamin Cummings Publishing Company.
8.	Principles of Anatomy and physiology 10 th edition (2003) Gerad J.Tortora and Sandra R.Grabowski John Wiley &Sons. Inc.



#### **Modality of Assessment**

#### **Theory Examination Pattern:**

#### A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

#### B) External Examination- 60%- 60 Marks

**Semester End Theory Examination: (Deviation from the usual modality)** 

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

#### **Semester End Theory Examination:**

Duration - These examinations shall be of **02 hrs** duration. Theory question paper pattern:

#### **Paper Pattern:**

Questi on	Options			Marks	Based on
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2	OR	Answer any 3	15	Unit II



	questions out of 3 questions on Unit 2 Each question of 7.5 marks		questions out of 4 questions on Unit 2 Each question of 5 marks		
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks		Unit I, II, III
			Total	60	

#### **Practical Examination Pattern:**

A) Internal Examination: - 20 Marks

Particulars	
Journal	05
Experimental	15
tasks	
Total	20

B) External Examination: - 30 Marks

**Semester End Practical Examination:** 



Particulars	Paper
Main question to	15
perform	
Experimental	
task /Estimation/	
Dissection/	
Statistical analysis.	
<b>Identifications</b>	10
Total	30

## Overall Examination & Marks Distribution Pattern Semester I

Course	1 0 1				1 0 2		Gra nd Tot
							al
	Inter	Extern	Tot	Inter	Extern	Tot	
	nal	al	al	nal	al	al	
Theory	40	60	100	40	60	100	200
Practica ls	20	30	50	20	30	50	100

-----

**Course Code: RUSLSc201** 

Course Title: Molecular and Cellular studies in Life Sciences II

Academic year 2019-20

#### **COURSE OUTCOMES:**

COURSE	DESCRIPTION
OUTCOME	



	Students will gain insights about following;
CO 1	To explain structure and functions of carbohydrates and lipids, classify lipids and carbohydrates, to illustrate stereochemistry and chemical reactions of monosaccharides.
CO 2	To classify and differentiate between different types of transport systems across cell membranes, plant and animal cell junctions.
CO 3	To explain structure and functions of cell organelles like ER, Golgi apparatus, Lysosomes, Peroxisomes, Glyoxysomes, Chloroplasts and Mitochondria.
CO 4	To differentiate between different separation techniques,like chromatography- paper and thin layer, to explain electrophoresis, differential centrifugation, salting in and out, their advantages, disadvantages and applications of all these techniques.



#### **Course Code: RUSLSc202**

## Course Title: Physiological systems, Genetics and Ecology II Academic year 2019-20

#### **COURSE OUTCOMES:**

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Explain the concept of homozygous,heterozygous,phenotype, genotype and alleles.
CO 2	Explain the Mendelian laws, monohybrid and dihybrid ratios with problems and chromosomal inheritance.
CO 3	Interspecific interactions at ecological level and distribution of the population can be related to biodiversity visits.

# DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code/	57		Lectures
Unit			
- Mi		F.Y.BSc. LIFE SCIENCES (Theory)	Credits/45 Lectures
RULSc		Molecular and Cellular studies in Life Sciences	
201		II	
	I	Biomolecules within living cells II	15
		Lipids:	Lectures
		Classification, structures function and properties	
		of lipids (simple, derived and complex with one example each)	
		Carbohydrates: Structure of Monosaccharides,	
		Disaccharides, Oligosaccharide, polysaccharides	



		Elaioplast), chloroplast morphology, structure of thylakoid membrane, photosynthetic pigments & a brief mention of photo-phosphorylation; chloroplast DNA.  Peroxisomes and Glyoxisomes:  Structure and functions	
5-9W.	III	Cell Organelles 2 and cell division Mitochondria: Structure of inner, outer membranes & the matrix with a brief mention of oxidative phosphorylation Mitochondria associated diseases (any one example). Plastids: Types and functions: (Leucoplast, chromoplast,	15 Lectures
		and active transport, endocytosis and Exocytosis.  Endoplasmic Reticulum:  Structure (including sarcoplasmic reticulum)  Role in protein synthesis (ER- Ribosome complex) and transport (Signal Hypothesis).  Ribosomes:  Subunits in prokaryotes and eukaryotes (including those within chloroplast and mitochondria); ER-Ribosome complex.  Lysosomes:  Types of lysosomes  Primary and Secondary lysosomes and their functions  Lysosome associated diseases - Tay Sachs,  Silicosis.	
	II	Separation techniques:  Paper and thin layer chromatography, principle of electrophoresis, differential centrifugation, Salting in and salting out (Ammonium sulphate fractionation).  Cell Organelles 1 Cell membrane: Membrane models: Unit membrane and Fluid Mosaic Model of Singer and Nicholson. Membrane junctions: Tight, gap, desmosomes, septate.  Membrane Transport: Diffusion, osmosis, passive	15 Lectures
		Animal and plant source starch, glycogen, cellulose and chitin.	



Course Code/ Unit	Unit	Course/ Unit Title	Credits/ Lectures
		F.Y.BSc. LIFE SCIENCES (Theory)	
RULSc 202		Physiological systems, Genetics and Ecology - II	Credits/45 Lectures
	I	Plant and Animal Physiology	15
		Excretion and Osmoregulation:	Lectures
		In plants – water and salt regulation under normal	
		and stressed conditions	
		In animals – Phylogenetic review of organs and	
		processes - contractile vacuole, flame cells,	
		nephridium, malpighian tubules, kidney and skin in man	
		Concept of osmoregulation and processes	
		associated with osmoregulation (ultrafiltration,	
		selective reabsorption, secretion, acid-base	
		regulation)	
		Nitrogenous excretory products (ammonotelism,	
		ureotelism and uricotelism)	
		Support and Locomotion:	
	•	Support in plants – herbaceous and woody plants  Types of skaletons – hydrostatic (nometodes)	
		Types of skeletons – hydrostatic (nematodes),	
	(,)	exoskeleton (arthropods/molluscs) and	
		endoskeletons (vertebrates-axial and appendicular	
		skeleton and joints E.g., Human)	
	II	Modifications of Mendel's laws and Mutations	15
00,	11	Modification of Mendel's laws:	Lectures
		Gene interactions: incomplete dominance, co-	
		dominance Multiple genes; Multiple alleles:	
		Blood group; Epistasis; Linkage: Sex limited; sex	
		influenced.	
		Mutations:	
		Point Mutations	
		Chromosomal aberrations:	
		Structural: deletion, duplication, inversion,	



	translocation.	
	Numerical: euploidy & aneuploidy (e.g. Downs,	
	Turners. Klienfelter's, Cri- du-chat)	
III	Community Ecology and Animal Behaviour	15
	Principles of Ecology:	Lectures
	Food chains, flow of energy, food webs, trophic	
	levels, ecological pyramids & their efficiencies.	
	Ecosystem Types – Terrestrial, Aquatic,	
	Hydrothermal vents.	
	Ecological succession: Lithosere and Hydrosere	00
	Behavioural Ecology:	0.0
	Basic behavioural patterns – taxis, tropism, reflex,	
	instinct & conditioned behaviour	
	Ecological Adaptations: plants (any two) and	
	animals (any two)	
	Biological clocks and rhythms	
	Indian Biodiversity – current status	

Course	Unit	Course/ Unit Title	Credits/
Code/		Course, Cine Free	Lectures
		~ () '	Lectures
Unit			
		PRACTICALS	2 Credits
			Total 45
			lectures
RUSLScP		Practicals in Molecular and Cellular studies in	
201		Life Sciences - II (Practical-I)	
		1.Colorimetry: Preparation of dilutions of	
	.0	required concentration from a stock solution of a	
	~(0	coloured compound	
		Estimation of Lambda max of a coloured solution.	
		Verification of Beer Lambert's law for a coloured	
		solution	
		Absorption Spectra-Colour solution, plant	
0.0		pigment. Lambda max	
		2.Localization of Carbohydrates and Lipids;	
		Starch grains of Potato / of seeds and other tubers	
		Fat bodies of Cockroach/Drosophila/lipids of	
		groundnut.	
		3.Enzymology:	
		Detection of Dehydrogenase enzyme activity	
		using sprouting grams / beans or muscle (as a	
		study of mitochondrial function)	



	Estimation of Catalase enzyme activity using	
	paper disc rising-time technique (Blood/Plant	
	source).	
	4.Effect of ageing on plant leaf pigments /	
	separation of amino acids – using Paper	
	Chromatography.	
	5.Effect of antitranspirants on stomatal	
	<b>movements</b> . (1 monocot and 1 dicot).	
	6.Study of Electron Micrographs as listed	.0.
	below:	
	Mitochondria / Chloroplast	0,0
	Lysosomes	
	Basement membrane/ junctions	
	Cilia or Flagella	
RUSLScP	Practicals in Physiological systems, Genetics	2 Credits
202	and Ecology - II	Total 45
	0,	lectures
	1. Study of Barr Body	
	2. Animal Biodiversity:	
	Part II: Classification of Animals – Invertebrates	
	Part III : Classification of Animals – Vertebrates	
	3. Biostatistics:	
	Purpose of Biostatistics: Data collection, Discrete	
	and continuous variables, qualitative and	
	quantitative	
	Study of Class Intervals and calculation of	
	frequency	
	Representation – tabular and graphical – line	
	graph, frequency curve, Ogive curve, histogram	
3'0	and pie diagram.	
	Measures of central tendency – Mean, Median,	
10.	·	
	Mode and Standard Deviation (data from	
	experiments done in class or Field study data can	
	be used for biostatistics).	
	4.Gaseous exchange & Excretion in plants –	
	Stomata in dicot monocot and Pneumatophores.	
	5. Excretion in plant: salt glands in mangrove	
	plant	
	6. Temporary mount Nephridia in earthworm	
	7. Assignment: Perform a search on any one	
	topic using pubmed, download about ten abstracts	
	topio using puomed, download about ten abstracts	



and prepare a summary of the literature.	
6. Field work and report writing	

	REFERENCES:
	RUSLSc 101 and 201
1	Cell Biology, Genetics, Molecular biology, Evolution and Ecology P.S. Verma and V.K. Agarwal
	Publishers: S. Chand and Co.Ltd., (2009)
2.	Becker's World of the Cell: International Edition – 8 th Edition Jeff Hardin Gregory Paul Bertoni, Lewis J. Kleinsmith
	Publishers: Pearson Dorling Kinderflay India / Pearson India (2011)
3.	Life: The Science of Biology,
	William K Purves, D. Sadava, G. H. Orians and H.C. Heller 7th Edn. (2003) Sinauer Associates
4.	Molecular Cell Biology – 7 th Edition
	Ed: Harvey Lodish, Arnold Berk, Chris A. Kaiser and 5 more (2012) Pub: Macmillan
5.	Molecular Biology of the Cell
	Ed: Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter 5th Edition (2007) or 6 th Edition (2014) Pub: Garland Science
6.	Essential Cell Biology
	Ed: Bruce Alberts, Dennis Bray, Karen Hopkin and Alexander Johnson (2009) 3rd Edition Pub: Garland Science
7.	Fundamentals of Biochemistry
8	Ed: Voet. and Voet 4th edition,
	(2010) Pub: John Wiley and Sons
0	
8	Lehninger Principles of Biochemistry Ed: D.L. Nelson,
	5th edition, (2008) Pub: CBS
	Publishers and Distributors



9.	Principles of Biochemistry Ed: Zubay G.L, Parson W.W. and Vance D.E. 1st edition (1995) Pub: W. C. Brown
`	RUSLSc 102 and 202
1.	Biological Science, Taylor, Green and Stout., 3rd edn. Ed. R. Soper . (2005) Cambridge Univ. press
2.	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al (2000) Pub: W. H. Freeman(London) Seventh Edition
3	Comparative Animal Physiology, Philip C.Withers, (1992), Saunders College Publishing House.
4	Biology A Modern Introduction, B.S.Beckett (1994), GCSE Edn. Oxford Univ. Press.
5	Essentials of Human Genetics, S.M.Bhatnagar, M.L.Kothari & L.A.Mehta, (1994), Orient Longman's Publication.
6	Cell Biology, Genetics, Molecular biology, Evolution and Ecology – P.S. Verma and V.K. Agarwal (2009)  Publishers: S. Chand and Co.Ltd.,
7	Biological Science : - Scott Freeman (2004) Pub: Benjamin Cummings Publishing Company
8	Principles of Anatomy and Physiology 10 th edition (2003) Gerard J. Tortora and Sandra R. Grabowski John Wiley & Sons, Inc.

# Modality of Assessment

#### **Theory Examination Pattern:**

#### C) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10



3.	Presentation on any journal article/ newsletter/ book review/	10
	conference/ guest lecture	
	TOTAL	40

#### D) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

#### **Semester End Theory Examination:**

Duration - These examinations shall be of 2 hours duration. Theory question paper pattern:

#### Paper Pattern:

Questi on	Options			Marks	Based on
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II
Q3	Answer any 2 questions out of 3 questions on Unit 3	OR	Answer any 3 questions out of 4 questions on Unit 3	15	Unit III



	Each question of 7.5 marks		Each question of 5 marks		
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III
			Total	60	- 0

#### **Practical Examination Pattern:**

C) Internal Examination: 40%-40 Marks

Particulars	-0,
Journal	05
Experimental	15
tasks	
Total	20

#### D) External Examination: 60%- 60 Marks Semester End Practical Examination:

Particulars	Paper
Main question to	15
perform	
Experimental	
task/Estimation/	
dissection/	
statistical analysis	
Identifications	10
Total	30

## Overall Examination & Marks Distribution Pattern Semester II



Course		2 0 1			2 0 2		Gra nd Tot al
	Inter nal	Extern al	Tot al	Inter nal	Extern al	Tot al	
Theory	40	60	100	40	60	100	200
Practica ls	20	30	50	20	30	50	100

******



#### **Course Code: RUSLSc301**

## Course Title: Physiological Systems in Plants and Animals-I Academic year 2019-20

#### **COURSE OUTCOMES:**

COURSE OUTCOME	DESCRIPTION		
	Students will gain insights about following;		
CO 1	Students will understand as to how the physiological systems in the human body attain homeostasis.		
CO 2	Explain the Central nervous system(CNS) and peripheral nervous system (PNS). Understand concept of action potential and resting membrane potential in Nerve Impulse. Explain the role of synapse in nerve impulse.		
CO 3	Understand and compare different plant movements. To find its role in plant growth by designing an experiment to observe different plant movements		
CO 4	Explain the Behaviour studies in animals with suitable examples.  Compare between innate and learned behaviour. Elaborate on physiological aspects such as fat accumulation and thermoregulation during migration in animals		
CO 5	Explain alternation of generation in plants. Elaborate on the role of environmental factor in sex determination in animals. Discuss the importance of plant and animal interaction sex determination. Basis of sex determination in plants and animals.		
CO 6	Discuss physiology and explain the importance of hormones in menstrual cycle, pregnancy, parturition and menopause.		
CO 7	Explain the importance of different types of ovules in plants. Compare microsporogenesis and megasporogenesis.		



## Course Title: Biochemical Approach to Life Processes in Plants and Animals-I Academic year 2021-2022

COURSE OUTCOME	DESCRIPTION
OUTCOME	.10
	Students will gain insights about following;
CO1	To classify enzymes, specificity reactions of enzymes,
CO2	To explain models of enzyme action, enzyme kinetics and inhibition reactions, allostery, isoenzymes.
CO3	To propose a strategy to isolate and purify enzymes, compare different techniques of purification.
CO4	To explain the applications of enzymes in industry and medicine.
CO5	To describe the pathways of catabolism of carbohydrates, proteins and lipids and to evaluate bioenergetics in catabolism of carbohydrates and lipids.
CO6	To correlate and integrate metabolism of all biomolecules into the TCA cycle, and then the electron transport chain and thus summarize the sequences involved in cellular respiration and energy generation.



## Course Title: Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-I

## Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Evolutionary biology and genetics reveal the diversity of phyla in different geographic locations; the allelic frequencies that probably operate, correlations and other statistical applications will reveal the changes in population studies.
CO 2	To know about virtual libraries and databases



## **DETAILED SYLLABUS**

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
		S.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc 301		Physiological Systems in Plants and Animals-I	2 Credits Total 45 lectures
	I	Role of Hormone and Homeostatic  Mechanisms in Animals and Plants  Control systems in homeostasis and components of homeostatic control.  Cell signalling in the nervous system and endocrine system [eg. Amines (catecholamine or thyroid hormones)] —  a) Regulation of receptors (up and down regulation).  b) Regulation of cell signalling: 1 st , 2 nd and 3 rd order feedback mechanisms.  Hormones of Pineal, Hypothalamus, Pituitary, Thyroid, Parathyroid, Pancreas, Adrenal gland, Testis and Ovary.  Plant Hormone- Auxins, Giberellic acid,	15 Lectures
Palul	II	Cytokinin, Abscisic acid, Ethylene.  Introduction to Nervous System, Animal And Plant Movements and Behaviour  Human Nervous System – CNS and PNS overview.  Types of cells: Neuronal, Glial cells Role of meninges and CSF  Nature of the Nerve Impulse – Resting potential and Action Potential.  Introduction to types of Synapses and Nerve impulses. a) Behaviour in animal-Innate and learned with suitable examples.  b) Migration in animals.: Physiological aspect (Fat accumulation and thermoregulation).  Plant movements – Tropisms, Nasties – overview	15 Lectures
	III	and its molecular aspects with suitable examples  Developmental Biology in Plants and Animals  1. Basis of Sex Determination.	15 Lectures



	(a) Plants: Maize (b) Animals: Role of SRY gene and Aromatase (c) Role of environmental factors — Temperature and Parthenogenesis in insects Eg. Wasp/Honey bee/Ants (d) Plant-animal interaction for reproduction Fig wasp / Gall wasp (e) Sex reversal Alternation of generations in plants Eg. Adiantum.  Ovarian and testicular functions, puberty and regulation of uterine changes in menstrual cycle, menopause, pregnancy, parturition, lactation. Artificial regulation of reproduction: Use of contraceptive methods.  1. Development of embryos in monocot and dicot plants.	1000
RUSLSc 302	Biochemical Approach to Life Processes in Plants and Animals-I	2 Credits Total 45 lectures
Raini	Strategies for Isolation and purification of enzymes, measurement of specific activity and purification fold. Classification of enzymes (With an example of each). Effect of pH and Temperature.  Co-enzymes and co-factors: NAD, FAD, Mn, Mg, Zn and Cu (one example each). Kinetics (Michealis Menten, Lineweaver Burk plots). Enzyme Inhibitors, Activators and feedback inhibition. Allosteric enzymes (Kinases in Glycolysis) and their significance in metabolic regulation.  Concept of Isoenzymes: LDH.	15 Lectures
	II Carbohydrate Metabolism and Bioenergetics. Carbohydrate Metabolism:  a) Glycolysis – Process and metabolic regulation b) Pentose Phosphate Pathway c) Citric Acid Cycle: Process and regulation,	15 Lectures



		Importance of a central amphibalic mathereses	
		Importance as a central amphibolic pathway. Electron Transport System: Localisation and	
		Sequence of electron transporters.	
		Oxidative Phosphorylation: Mitchell's	
		Chemiosmotic Hypothesis, ATP synthesis,	
		Control of respiration, uncoupling and metabolic	
		poisons.	
	III	Lipids and Proteins Metabolism.	15
		1	Lectures
		Lipids - Catabolism : Lipolysis, Role of Carnitine	0.0
		in mitochondrial permeability, Beta- Oxidation of	
		fatty acids and integration into Kreb's cycle,	
		Ketone bodies and their significance.	
		Amino Acids – Catabolism: Protein Degradation	
		liberating amino-acids', Deamination,	
		Transamination & ammonia disposal by Urea	
		cycle, Decarboxylation & integration into Kreb's	
		cycle.	
RUSLSc		Evolutionary Biology, Biostatistics and	2 Credits
303		Bioinformatics in population studies-I.	Total 45
303		Bioinformatics in population studies-I.	Total 45 lectures
303	I	<b>Evolution and Population Genetics</b>	
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution	lectures
303	I	Evolution and Population Genetics  Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin	lectures 15
303	Ι	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution	lectures 15
303	I	Evolution and Population Genetics  Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace.	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils,	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection.	lectures 15
303	ı	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases.	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia).	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia). Populations and allelic frequencies, Hardy	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia). Populations and allelic frequencies, Hardy Weinberg Equilibrium, change in gene	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia). Populations and allelic frequencies, Hardy Weinberg Equilibrium, change in gene frequenciesdue to selection, mutation, migration	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia). Populations and allelic frequencies, Hardy Weinberg Equilibrium, change in gene frequenciesdue to selection, mutation, migration and genetic drift (Founder's effect).	lectures 15
303	I	Evolution and Population Genetics Darwinism: Conceptual arguments for evolution by Natural Selection given by Charles Darwin and Alfred Wallace. Evidence for evolution: Comparative anatomy and embryology, Fossil records and living fossils, Artificial selection. Study of Evolution in context of human genetic diseases. (BRCA1 / Huntington's/ Thalassemia). Populations and allelic frequencies, Hardy Weinberg Equilibrium, change in gene frequenciesdue to selection, mutation, migration and genetic drift (Founder's effect). Origin of variability, polymorphism, kinds of	lectures 15



II	Biostatistics	15
		Lectures
	Probability definition, Laws of Probability.	
	Binomial Distribution-Introduction.	
	Poisson Distribution-Introduction.	
	Normal Distribution-Introduction.	
	Bivariate Data, Scatter Diagram and its uses, Karl	
	Pearson's Correlation Coefficient, Spearman's	
	Rank Correlation Coefficient.	40,
TIT	Regression equations and their uses.	0
III	Bioinformatics	15
		Lectures
	Introduction to bioinformatics: Concept of	
	information network: internet, IP address,	
	TCP/IP, FTP, HTTP, HTML and URLs, XML,	
	URI, E-mail, Cloud Platforms.	
	Virtual libraries - The European Molecular	
	Biology Network (EMBnet), The National Center	
	for Biotechnological Information (NCBI), EMBL,	
	UniProt, SWISS- prot, Pub Med and its	
	applications.	
	Introduction to general Databases	
	a) Structured	
	b) Semi-structured	
	c) Unstructured	
	d) Basic SQL (Query).	
	Types of Databases:	
	(a) Genome Project	
	(b) Protein Database (PDB/ExPaSy)	
•	(c) Species Database (Yeast and Arabidopsis)	
.0	(d)Structured Database	
	(d)Structured Database	
	PRACTICALS	3
0.0	TRACTICALS	CreditsTot
		al 45
		lectures
RUSLScP I	Practicals in Physiological Systems in Plants	
	and Animals-I	
301	1.Good Laboratory Practices.	
	2.Demonstration of reproductive system and	
	location of endocrine glands in Albino Mouse	



	Male and Female (Virtual Lab).  3.Microtome and preparation of Endocrine gland slides from above dissected specimen or any suitable plant specimen.  4.Study of Histological features of Endocrine glands.  5.A complete study of Frog Embryology (Egg to Tadpole to Adult).  6.Study of Floral parts from the given flower accessory to essential whorls hibiscus, vinca, canna, monocot. 7.Study of pollen germination Using Vinca flower (in vitro).  8.a) Study of pollen germination in Vinca (in Vivo)  b) Tracing the path of the pollen tube along the stylar canal using Aniline blue stain.  9.Detection of activity of plant hormones (Dose dependent response).  10.Observation and Study of locally collected
	Leaf Gall and any other one plant disease.
RUSLScP	II Practicals in Biochemical Approach to Life
	Processes in Plants and Animals- I
302	1.A. Instrumentation /
	Technique
	- pH metry - Colorimetry
	- Colorimetry - Titration.
	B- Process / Concept and immediate Relevance.
	- Extraction, Purification
	- Analysis / Estimation  CLP(Cood Loboratory practices) in corporated
	- GLP(Good Laboratory practices) incorporated
	into every practical Acid, bases and buffers.
	2. pH meter -
00)	a) Principle & instrumentation and
	b) Determination of pH (titration of
_	Acids/Bases/Buffers/ 'chameleon balls').
	(in FY the students were introduced to the
	concept of pH measurement of familiar liquids-
	here tech & details are given- practically
	understanding buffering using Glycine / titration
	curve).



	c) Phosphate buffer preparation using
	Henderson Hasselbalch equation
	d) Glycine titration
	3. Protein precipitation by pH manipulation
	(Casein from Milk/ Curds)
	(From previous experiments and pH
	manipulation, proteins can be precipitated).
	4.Study of Enzyme activity and Kinetics:
	Determination of K _M of an enzyme. Urease (from
	Jack beans) /Lipase/Protease/ (from seeds/
	detergents) / amylase source (Enzyme activity can
	be detected and estimated - using colorimetry).
	5. Histochemical localization of Enzymes (Acid
	Phosphatase) (Enzyme activity can be localized).
	6.Estimation / Quantitation :
	Colorimetric Protein Estimation by Biuret
	Method. (Enzyme extract / Casein from previous
	expts)
	(Proteins, such as the isolate from experiment 2
	can be estimated by colour reaction).
	7. Colorimetric Cholesterol Estimation / total
	Lipid Estimation from egg. (Lipid metabolism is
	an important component of our systems, content
	can be estimated by colour reaction).
	8. Titrimetric estimation of Ascorbic acid (Vit C).
	(Estimation of biological materials by non-
	colorimetric method)
RUSLScP III	Evolutionary Biology, Biostatistics and
303	Bioinformatics in Population Studies-I
303	Biostatistics (using biological data)
	1.Probability testing 2.Normal Distribution and Normal curve
	3. Correlation
0.0	4.Regression Analysis .
	(MS Excel Optional)
	Bioinformatics:
	1.Use of various Cloud platforms – Google,
	Onedrive.
	2.Use of various Internet Protocols – HTTPS,
	FTP, SMTP.
	3.Demonstrate working on databases –
	a) Structured



b) Semi-structured	
c) Unstructured.	
4.Identify sequence and database entry of a	
species in various databases – Tr-EMBL, SWISS-	
Prot, Uni-Prot.	

## References

	RUSLSc 301
1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub: Sinauer Associates.
2.	Essential Developmental Biology J.M. W. Slack (2nd edition ) (2006) Pub: Blackwell Publishers
3.	Developmental Biology Scott Gilbert (9th edition ) (2010) Sinauer Associates
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub : Thomson Brooks
5	Embryology of Angiosperms
	Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas
6	Vander's Human Physiology
	Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int. Edition.
7	Principles of Animal Physiology
	C Moyes and Schulte 2nd edition (2007) Pearson Education.
8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone
9	Microbiology
	Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi
10	Textbook of Microbiology.
	Ananthanarayanan and Panniker 5th Edition (1996). Orient Longman.
	RUSLSc 302



1	1. Lehninger's Principles of Biochemistry Eds: D.L Nelson and M.M. Cox, Pub: WH Freeman Publishers, New York. 4th edition (2005)
2	Biochemistry Eds: J.M. Berg, J L Tymencko and L. Stryer
	Pub: W H Freeman and co., New York. 5th edition (2002)
3	Fundamentals of Biochemistry by Eds : D.Voet , J. G. Voet Pub : John Wiley &Co., New York Pratt 1st ed (2004)
4	Principles of Biochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)
5	Principles of Biochemistry Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)
6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman London) Seventh Edition(2000)
	RUSLSc 303
1	Strickberger's Evolution – B. Hall and B. Hallgrimsson 4th Edition (2008) Jones and Bartlett Publishers
2	Remarkable Creatures: Epic Adventures in Search of the Origin of Species Sean B. Carrol, (2009), Mariner Books,
3	Population Genetics, M.B.Hamilton, (2009). Wiely-Blackwell,
4	Population Genetics : A Concise Guide J.H.Gillespie, (2004) Johns Hopkins University Press.
5	Methods in Biostatistics of Medical students and Research Workers B.K.Mahajan, 8th Edition, (2010)
6	Fundamental concepts of Bioinformatics
7	Exploring Bioinformatics – A Project-based Approach St. Clair and Visick (2010) Jones and Bartlett Publishers
8	Bioinformatics for Dummies



Jean-Michel Claverie, Cedric Notredame, 2003, John Wiley & Sons annarain Ruia Ruionomous College



## **Modality of Assessment**

### **Theory Examination Pattern:**

#### E) Internal Assessment- 40%- 40 Marks

Sr No	<b>Evaluation type</b>	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

## F) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.



## **Semester End Theory Examination:**

Duration - These examinations shall be of **02 HRS** duration.

Theory question paper pattern:

## **Paper Pattern:**

Q.	Options			Marks	Based on
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III
	Wilgie		Total	60	



#### **Practical Examination Pattern:**

### E) Internal Examination: 40%-40 Marks

Particulars	
Journal	05
Experimental	15
tasks	
Total	20

## F) External Examination: 60%-60 Marks

### **Semester End Practical Examination:**

Particulars	Paper
Main question to	20
perform Experimental	-0/
task/Estimation/	
dissection/Bioinform	(O)
atics	
statistical analysis	)*
project work	
<b>Identifications</b>	10
Total	30



### **Overall Examination & Marks Distribution Pattern**

#### Semester III

Cours	301			302			3	03		Gr
e										an
										d
										T
										ot
										al
	Inte	Exte	T	Inte	Exte	T	In	E	T	
	rnal	rnal	ot	rnal	rnal	ot	te	xt	ot	0
			al			al	rn	er	al	
							al	n		
								al		
Theor	40	60	10	40	60	10	40	6	10	
y			0			0		0	0	200
Practi	20	30	50	20	30	50	20	3	50	
cals								0		100

_____



## Course Title: Physiological Systems in Plants and Animals-II Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Adaptive mechanism in plant and animal to extreme environmental condition
CO 2	Regulation of energy stores and various eating disorders.
CO 3	To describe defense mechanisms in plants and animals.
CO4	To differentiate between innate and adaptive immunity and describe them.
CO 4	Explain epidemiology, aetiology, pathology, diagnosis, therapy and preventive measures and vaccines for different diseases



## Course Title: Biochemical Approach to Life Processes in Plants and Animals-II Academic year 2019-20

COURSE	DESCRIPTION
OUTCOME	,10
	Students will gain insights about following;
CO 1	To explain the anabolic pathways in carbohydrate, lipids and proteins
CO 2	To compare non- cylcic and cyclic photosynthetic pathways. To justify how photorespiration is a wasteful process and to review how C4 plants circumvent it.
CO 3	Understand the role of different enzymes in replication of DNA. Compare between the prokaryotic and eukaryotic replication process.
CO 4	Explain the transcription and translation process in prokaryotes and regulation of gene expression in prokaryotes.
CO 5	Compare transcription and translation process in eukaryotes. Understand the concept of post translational modifications in eukaryotes



## Course Title: Evolutionary Biology, Biostatistics and Bioinformatics in Population **Studies-II**

## Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Students should know;human evolution from social to cultural changes, from the Hunter gatherer type to the most sophisticated type of today.
CO 2	Concept of Species and Speciation, Mitochondrial DNA, Evolution of Humans, Concepts like altruism and selection, Society Evolution and Genetic Engineering.
CO 3	Study bio statistical concepts like student's t test F- Test, Chi-Square test.
CO 4	To explain the features of the genetic code and to apply it in translating nucleic acid sequence.
CO5	To annotate and to translate nucleic acid sequences into protein sequences, to evaluate protein sequence with location and function,
CO6	To compare and contrast molecular and morphological phylogenetic trees, to explain the parsimony principle and to construct phylogenetic trees.



## **DETAILED SYLLABUS**

Course Code/ Unit	Uni t	Course/ Unit Title	Credits/ Lectures
		S.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc 401		Physiological Systems in Plants and Animals-II	2 Credits Total 45 lectures
	I	Adaptive Mechanisms to Environmental Changes  Adaptations in plants to extreme thermal conditions.  Adaptations in animals to extreme thermal conditions.  Fever, Hyperthermia, heat exhaustion and heat stroke.  Thermogenesis: shivering and nonshivering thermogenesis, Hyperthermia induced by pyrogens. Antifreeze proteins in plants and animals.  Regulation of energy stores: control of food intake,  Role of Leptin, Ghrelin and Kisspeptin.  Eating disorders: Anorexia and Bulimia Nervosa, Obesity, Diabetes.	15 Lectures
P.alux	II	Innate Immunity and Adaptive Immunity.  Mechanisms of Innate Immunity – In invertebrates (hemocytes) and in Vertebrates. (Physical and Physiological barriers, Phagocytosis and inflammation). Mechanisms of adaptive immunity-T and B cells. (Mode of Recognition of Antigens).  Virulence factors and toxins: virulence factors, exotoxins, enterotoxins, endotoxins. Host factors in infection: host risk factors, innate resistance.	15 Lectures



Biomolecules such as secondary metabolites, surface protectants and enzymes in plants. Parasite escape mechanisms in infection.  Diseases in plants and animals (with respect to epidemiology, aetiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)  Vector borne Diseases—Malaria, Dengue or Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, Corona Virus.  Bacterial Diseases—Tuberculosis or Typhoid, Leprosy Fungal Diseases—Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases—Filariasis, Diseases in Plants: Tobacco Mosaie Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSe 402  Biochemical Approach to Life Processes in Plants and Animals—II  Total 45 lectures  I Anabolism of Garbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  Molecular Biology studies in prokaryotes  II Molecular Biology studies in prokaryotes  II Molecular Biology studies in prokaryotes				
Parasite escape mechanisms in infection.  III Diseases in plants and animals (with respect to epidemiology, actiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)  Vector borne Diseases—Malaria, Dengue or Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases—Tuberculosis or Typhoid, Leprosy Fungal Diseases—Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases—Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402  Biochemical Approach to Life Processes in Plants and Animals—II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Biomolecules such as secondary metabolites,	
III Diseases in plants and animals (with respect to epidemiology, actiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)  Vector borne Diseases—Malaria, Dengue or Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases—Tuberculosis or Typhoid, Leprosy Fungal Diseases—Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases—Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402  Biochemical Approach to Life Processes in Plants and Animals—II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			surface protectants and enzymes in plants.	
epidemiology, aetiology, pathology, diagnosis, therapy, preventive measures and vaccines giving the current status)  Vector borne Diseases— Malaria, Dengue or Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases— Tuberculosis or Typhoid, Leprosy  Fungal Diseases— Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases— Filariasis.  Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSC  Biochemical Approach to Life Processes in Plants and Animals—II  Total 45 lectures  I Anabolism of Biomolecules  I Anabolism of Carbohydrates:  a) Gluconeogenesis  b) Glycogen synthesis  Anabolism of Lipids:  a) Fatty acid biosynthesis  b) Cholesterol and prostaglandin biosynthesis.  Anabolism of Amino acids:  a) Transamination and its significance  b) Glutamine synthesis  Synthesis of purines & pyrimidines with Significance.  Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Parasite escape mechanisms in infection.	
therapy, preventive measures and vaccines giving the current status)  Vector borne Diseases— Malaria, Dengue or Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases— Tuberculosis or Typhoid, Leprosy  Fungal Diseases— Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases— Filariasis.  Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc  Biochemical Approach to Life Processes in Plants and Animals—II  Total 45 lectures  I Anabolism of Biomolecules  I Anabolism of Carbohydrates:  a) Gluconeogenesis  b) Glycogen synthesis Anabolism of Lipids:  a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids:  a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures		III	Diseases in plants and animals (with respect to	15 Lectures
giving the current status) Vector borne Diseases— Malaria, Dengue or Chikungunya. Viral Disease-AIDS, Herpes, Swine flu, Corona Virus. Bacterial Diseases— Tuberculosis or Typhoid, Leprosy Fungal Diseases— Ringworm or Candidiasis, Psoriasis. Helminthic Diseases— Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402 Biochemical Approach to Life Processes in Plants and Animals—II Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			epidemiology, aetiology, pathology, diagnosis,	
Vector borne Diseases—Malaria, Dengue or Chikungunya. Viral Disease-AIDS, Herpes, Swine flu, Corona Virus. Bacterial Diseases—Tuberculosis or Typhoid, Leprosy Fungal Diseases—Ringworm or Candidiasis, Psoriasis. Helminthic Diseases—Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402 Biochemical Approach to Life Processes in Plants and Animals—II Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			therapy, preventive measures and vaccines	
Chikungunya.  Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases- Tuberculosis or Typhoid, Leprosy Fungal Diseases- Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases- Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402  Biochemical Approach to Life Processes in Plants and Animals- II Total 45 lectures  I Anabolism of Biomolecules  I Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			giving the current status)	
Viral Disease-AIDS, Herpes, Swine flu, CoronaVirus.  Bacterial Diseases- Tuberculosis or Typhoid, Leprosy Fungal Diseases- Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases- Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402  Biochemical Approach to Life Processes in Plants and Animals- II Total 45 lectures  I Anabolism of Biomolecules  I Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Vector borne Diseases— Malaria, Dengue or	.0.
CoronaVirus.  Bacterial Diseases- Tuberculosis or Typhoid, Leprosy Fungal Diseases- Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases- Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc 402  Biochemical Approach to Life Processes in Plants and Animals- II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Chikungunya.	
Bacterial Diseases- Tuberculosis or Typhoid, Leprosy Fungal Diseases - Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases - Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc Biochemical Approach to Life Processes in Plants and Animals- II Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Viral Disease-AIDS, Herpes, Swine flu,	160
Leprosy Fungal Diseases—Ringworm or Candidiasis, Psoriasis. Helminthic Diseases—Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc Holants and Animals—II Plants and Animals—II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			CoronaVirus.	
Fungal Diseases—Ringworm or Candidiasis, Psoriasis.  Helminthic Diseases—Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc Biochemical Approach to Life Processes in Plants and Animals—II Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Bacterial Diseases- Tuberculosis or Typhoid,	
Psoriasis.  Helminthic Diseases – Filariasis.  Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSc Biochemical Approach to Life Processes in Plants and Animals- II Total 45 lectures  I Anabolism of Biomolecules  I Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Leprosy	
Helminthic Diseases— Filariasis. Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  RULSC Biochemical Approach to Life Processes in Plants and Animals—II Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  2 Credits Total 45 lectures			Fungal Diseases - Ringworm or Candidiasis,	
Diseases in Plants: Tobacco Mosaic Virus, Crown gall bacterial infection, Puccinia fungal infection with crops.  Biochemical Approach to Life Processes in Plants and Animals- II Total 45 lectures  I Anabolism of Biomolecules  Is Lectures  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  2 Credits Total 45 lectures			Psoriasis.	
Crown gall bacterial infection, Puccinia fungal infection with crops.  Biochemical Approach to Life Processes in Plants and Animals- II  I Anabolism of Biomolecules  I Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  2 Credits Total 45 lectures  2 Credits Total 45 lectures			Helminthic Diseases— Filariasis.	
RULSc 402  Biochemical Approach to Life Processes in Plants and Animals- II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  2 Credits Total 45 lectures			Diseases in Plants: Tobacco Mosaic Virus,	
RULSc 402  Biochemical Approach to Life Processes in Plants and Animals- II  Total 45 lectures  I Anabolism of Biomolecules  Anabolism of Carbohydrates: a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Crown gall bacterial infection, Puccinia fungal	
Plants and Animals- II  I Anabolism of Biomolecules  I Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			infection with crops.	
I Anabolism of Biomolecules  Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures	RULSc		Biochemical Approach to Life Processes in	2 Credits
Anabolism of Biomolecules  Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids:  a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures	402		Plants and Animals- II	Total 45
Anabolism of Carbohydrates:  a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures				lectures
a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures		I	Anabolism of Biomolecules	15 Lectures
a) Gluconeogenesis b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures				
b) Glycogen synthesis Anabolism of Lipids: a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Anabolism of Carbohydrates:	
Anabolism of Lipids:  a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			a) Gluconeogenesis	
a) Fatty acid biosynthesis b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			b) Glycogen synthesis	
b) Cholesterol and prostaglandin biosynthesis. Anabolism of Amino acids: a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures		5	Anabolism of Lipids:	
Anabolism of Amino acids:  a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			a) Fatty acid biosynthesis	
a) Transamination and its significance b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures	- (			
b) Glutamine synthesis Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Anabolism of Amino acids:	
Synthesis of purines & pyrimidines with Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			a) Transamination and its significance	
Significance. Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures	20		b) Glutamine synthesis	
Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes  15 Lectures			Synthesis of purines & pyrimidines with	
Photorespiration in plants: C3 and C4 plants  II Molecular Biology studies in prokaryotes 15 Lectures				
II Molecular Biology studies in prokaryotes 15 Lectures			Significance.	
r y				
DNA replication in prokaryotes.			Photosynthesis, Light reaction and Calvin cycle	
		II	Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  Molecular Biology studies in prokaryotes	15 Lectures
Transcription in Prokaryotes		II	Photosynthesis, Light reaction and Calvin cycle Photorespiration in plants: C3 and C4 plants  Molecular Biology studies in prokaryotes  DNA replication in prokaryotes.	15 Lectures



Translation in prokaryotes Regulation of gene expression and its significance: Operon model (Lactose / Tryptophan)  III Molecular Biology studies in eukaryotes DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its consequences
significance: Operon model (Lactose / Tryptophan)  III Molecular Biology studies in eukaryotes DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its  15 Lectures
Operon model (Lactose / Tryptophan)  III Molecular Biology studies in eukaryotes DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its  15 Lectures
III Molecular Biology studies in eukaryotes DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its  15 Lectures
DNA Replication in Eukaryotes Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
Transcription in Eukaryotes and Post Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
Transcriptional modifications Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
Translation in Eukaryotes and post translational modification  RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
RULSc Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
RULSc 403 Evolutionary Biology, Biostatistics and Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
403 Bioinformatics in Population Studies-II Total 45 lectures  I Evolutionary Adaptations and its 15 Lectures
lectures I Evolutionary Adaptations and its 15 Lectures
I Evolutionary Adaptations and its 15 Lectures
· · ·
consequences
Origin of Species: Biological species concept,
morphological species, Allopatric and sympatric
speciation, Isolating mechanism preventing
exchange in populations. Rates of speciation-
punctuated or gradual. Life history of a species,
Mitochondrial DNA and tracing human
phylogeny and extinctions.
Human evolution: Factors in Human Origin:
Bipedalism, improvement in food acquisition,
improved predator avoidance and reproductive
success, Hunter gatherer societies. Altruism and
kin selection.
Evolution of the Society: Cultural vs biological
evolution, social Darwinism, eugenics,
reproductive technologies and genetic
engineering- impact on human culture.
II Biostatistics 15 Lectures
Sampling variability and significance.
Degrees of freedom, Statistical Hypothesis, Type
I and Type-II errors, Level of Significance.
Test of Significance
Test for equality of two means.
t-Tests - Paired and unpaired.
Analysis of Variance (ANOVA) one way



		classification, F-test.	
		Chi Square Test for independence 2x2 table.	
	Ш	Bioinformatics	15 Lectures
		DNA sequence Data analysis-	
		(a) Annotation of putative genes – ORF finding.	
		(b) Genetic code and Frame translation to amino	
		acids, concept of six frame translation.	
		Phylogenetic Analysis.	.0.
		(a) Concept of paralogous and orthologous genes	-00
		(b) Nucleic acid based phylogenies	6,0
	(c	) Nucleotide sequence comparisons and homologies	
		(d) Phylogenetic Trees	
		(e) Parsimony principle and limitations of	
		molecular phylogenetic trees.	
		(f) Globin gene analysis	
		PRACTICALS	3 Credits
			45
			Lectures
			Licetti
RULScP		Practicals in Physiological Systems in Plants	
401		and Animals-II	
		1.Extraction and detection of Plant alkaloids,	
		saponines, tannins and volatile oils.	
		2.Alkaloid separation by TLC. 3.ABO Blood	
	•	typing.	
	.0	4. Total RBC count using a Hemocytometer.	
		5. Principle and working on home pregnancy test	
•	0	slide / Widal Test- Qualitative.	
		<ul><li>6.Streak plating (T, Pentagon and Quadrant –Any</li><li>2) to isolate microorganism from a mixed culture</li></ul>	
		using differential media.	
0.0		7. Antibiotic sensitivity of microorganisms (Plant	
		extract, Tetracycline/ Gentamicin).	
		8. Study the effect of tobacco extract or caffeine or	
		any other plant extract on heart beat of Daphnia.	
RULScP		Practicals in Biochemical Approach to Life	
402		Processes in Plants and Animals- II.:	
		A. Instrumentation / Technique ( I / T ) (1) PAGE	



	(Demonstration).
	Chromatography – Paper, Thin layer, Column.
	B. Process / Concept and immediate Relevance (C
	and R)
	- Extraction, Purification
	- Analysis / Estimation
	GLP(Good Laboratory practices) incorporated
	into every practical Separation / Extraction
	techniques
	10,0
	1.Extraction and Detection of RNA/Ribose
	Sugars. C, T (Extraction of nucleic acid and
	detection by colour reaction)
	2.Chromatography of Sugars – Circular Paper C,
	T
	(Separation of carbohydrates and detection by
	colour reaction)
	3. Thin Layer Chromatography for separation of
	Plant Pigments.(Slide technique) C,T,R
	(Separation techniques for charged, uncharged
	materials based on solvent partition)
	4. Solvent Extraction of Lipids. C, T, R
	(Extraction of lipid and proportional estimation
	by weight)
	5.Column Chromatography of Proteins /
	Pigments. I, C, T(Separation technique for
	proteins/ other materials based on charge/size)
	6.Protein separation by PAGE (Demonstration) I,
	C
<	(Separation techniques for charged materials
	based on electrophoretic mobility)
- 0	7.Interpretation of pathological reports based on
60.	the biochemical analysis.
RULScP	Evolutionary Biology, Biostatistics and
403	
	Bioinformatics in Population Studies-II
	Comparative Anatomy of Brain (Invertebrate to
	vertebrate).



Study of Fossils (One Animal and One Plant)
Human Karyotyping- Normal and Abnormal
(Numerical and Structural)
- Study of Giant Chromosome from Salivary
Glands of Chironomus Larvae
BLAST search
Bioinformatics- Phylogenetic analysis using
Globin gene and Mitochondrial DNA.
Applications using biological data :-
- Student t test
- Z-test
- ANOVA
- Chi square test
Analysis of Variance one way classification
Project Report based on bioinformatics/
Biostatistics / Population Genetics / Evolution.

## References:

	RUSLSc 401
1.	Plant physiology Taiz and Zeiger (5th edition) (2010) Pub: Sinauer Associates.
2.	Essential Developmental Biology J.M. W. Slack (2nd edition ) (2006) Pub: Blackwell Publishers
3.	Developmental Biology Scott Gilbert (9th edition ) (2010) Sinauer Associates
4	Fundamentals of physiology - A Human perspective L Sherwood 5th edition (2006) Pub: Thomson Brooks
5	Embryology of Angiosperms  Bhojwani and Bhatnagar 4th edition (1999) New Delhi Vikas Pub
6	Vander's Human Physiology



	Widmaier, Raff, Strand (10th edition,) (2006) McGraw Hill Int. Edition.	
7	Principles of Animal Physiology	
	C Moyes and Schulte 2nd edition (2007) Pearson Education.	
8	Medical Microbiology: A guide to microbial infections . Greenwood, Slack, Peutherer and Barer 17th Ed (2007) Churchill Livingstone	
9	Microbiology	
	Davis, Dulbecco and Ginsberg. (1990), Lippincott Company, Phi	
10	Textbook of Microbiology.	
	Ananthanarayanan and Panniker 5th Edition (1996). Orient Longman.	
	RUSLSc 402	
1	1. Lehninger's Principles of Biochemistry Eds: D.L Nelson and M.M. Cox, Pub: WH Freeman Publishers, New York. 4th edition (2005)	
2	Biochemistry Eds: J.M. Berg, J L Tymencko and L. Stryer	
	Pub: W H Freeman and co., New York. 5th edition (2002)	
3	Fundamentals of Biochemistry by Eds: D.Voet, J. G. Voet Pub: John Wiley &Co., New York Pratt 1st ed (2004)	
4	Principles of iochemistry Ed: Lehninger.A Pub: CBS Publishers and Distributors, 2nd Edition (1993)	
5	Principles of Biochemistry	
	Eds: Zubay G.L, Parson W.W. and Vance D.E. Pub: W. C. Brown, First Edition (1995)	
6	An Introduction to Genetic Analysis Ed: Griffiths A.J. et al, Pub: W. H. Freeman (London) Seventh Edition (2000)	



	RUSLSc 403
1	Strickberger's Evolution – B. Hall and B. Hallgrimsson 4th Edition (2008) Jones and Bartlett Publishers
2	Remarkable Creatures: Epic Adventures in Search of the Origin of Species Sean B. Carrol, (2009), Mariner Books,
3	Population Genetics, M.B.Hamilton, (2009). Wiely-Blackwell,
4	Population Genetics : A Concise Guide J.H.Gillespie, (2004) Johns Hopkins University Press.
5	Methods in Biostatistics of Medical students and Research Workers B.K.Mahajan, 8th Edition, (2010)  Jaypee.
6	Fundamental concepts of Bioinformatics
7	Exploring Bioinformatics – A Project-based Approach St. Clair and Visick (2010) Jones and Bartlett Publishers
8	Bioinformatics for Dummies Jean-Michel Claverie, Cedric Notredame, 2003.



## **Modality of Assessment**

### **Theory Examination Pattern:**

#### A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation Type	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

## B) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.



## **Semester End Theory Examination:**

Duration - These examinations shall be of **2 HRS** duration. Theory question paper pattern:

## **Paper Pattern:**

<b>Ques</b> tion	Options			Marks	Based on
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III
			Total	60	



### **Practical Examination Pattern:**

## A) Internal Examination: 20Marks

Particulars	
Journal	05
Experimental	15
tasks	
Total	20

## B) External Examination:30 Marks Semester End Practical Examination:

Particulars	Paper
Main question to	20
perform Experimental	-05
task/Estimation/	
dissection/Bioinform	
atics	
statistical analysis	~0
project work	
<b>Identifications</b>	10
Total	30



#### **Overall Examination & Marks Distribution Pattern**

#### **Semester IV**

Cours e	401			402			4	03		Gr an d T ot al
	Inte rnal	Exte rnal	T ot al	Inte rnal	Exte rnal	T ot al	In te rn al	E xt er n al	T ot al	0
Theor y	40	60	10 0	40	60	10 0	40	6	10 0	200
Practi cal	20	30	50	20	30	50	20	3 0	50	100

-----



## **Course Title: Genetics and Immunology -I**

## Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Explain the discoveries of genetics. Understand the Structural organization of a prokaryotic genome. Explain structural organization of a eukaryotic genome. Compare unique and repetitive sequences of DNA. Explain chromosomal condensation. Justify the role of acetylation and methylation in methylation and remodelling.
CO 2	Compare the Life Cycle of lytic and lysogenic phages. Explain the processes of Conjugation, Transformation. Distinguish between generalized and specialized Transduction.
CO 3	To explain the role of different immune cells and organs, to distinguish between innate and adaptive immunity.
CO4	To explain the experimental design to obtain monoclonal antibodies and their applications
CO5	To explain the techniques to estimate Antibody or Antigen concentrations, to describe the genetic recombination theory for generating a vast array of antibodies.
CO6	To construct the ontogeny flow chart of B cells and T cells, to connect innate and adaptive pathways of complement system activation, explain how structure of MHC molecules and function are related, describe the activity of cytokines and immune responses.



## **Course Title: Developmental Biology and Neurosciences-I**

## Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Role of the germinal layers of the developing embryo and the expression of specific genes, life cycle of model organisms like amphibians & Arabidopsis
CO 2	Communications between the CNS and the PNS with the help of Neurotransmitters for memory and learning



## Course Title:Biotechnology and Genetic Engineering- I Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	To explain and summarize the history of fermentation technology, to demonstrate ways of strain improvement, to design and compare media for various purposes, to formulate methods for downstream processing of different industrially important end products.
CO 2	To explain specifications for production of food and beverages, to justify the importance of different procedures of Quality Assurance in each of the production techniques.
CO 3	Understand the history of Gene cloning. Explain the role of different restriction enzymes in molecular cloning. Understand the concept of recombination mapping.
CO 4	Understand how Isolation of cloning vectors, selection of gene cloning organisms, isolation of desired DNA to be cloned is important.
CO 5	Explain the techniques like Immunological method, Nucleic acid hybridization method, Hybrid arrest and Hybrid release method(HART and HRT) for screening and selection of the desired clones.



## Course Title: Ecology, Conservation Biology, Assessment and Management- I Academic year 2019-20

## **COURSE OUTCOMES:**

COURSE	DESCRIPTION	
OUTCOME		
	Students will gain insights about following;	
CO 1	Study of the biogeochemical cycles of nature, interaction of the biotic community and the abiotic resources, loss of biodiversity, disturbed ecological web of life.	
CO 2	Citizens action for conservation, restoration significance in protection GMO,IPR for sustainable living, reducing demands and reducing conflicts towards sustainable development	

# DETAILED SYLLABUS : -

Course	Uni	Course/ Unit Title	Credits/
Code/	t	60	Lectures
Unit			
		T.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc501		Genetics and Immunology - I	2.5 Credits
	10		Total 60
			Lectures
	Ι	The Genetic material	15
0.0			Lectures
		Introduction - Discovery of the genetic:	
		Griffith's experiment of 1928; Avery, McLeod and	
		McCarty's experiment of	
		1944; Hershey-Chase's experiment of 1952; and	
		Fraenkel-Conrat and B.	
		Singer's experiment of 1956.	
		*To be given as Assignment/Presentations.	
		Molecular aspects:	



-			
		Sequence complexity of DNA -Unique and repetitive sequences of DNA; Denaturation kinetics and 'CoT' value; Satellite DNA  Genomes:  Structural organization of a prokaryotic genome Structural organization of a eukaryotic genome Higher orders of chromosome packing; 'C value paradox'  Introduction to gene regulation in Prokaryotes  Gene regulation in eukaryotes  Chromatin condensation,  Modification and remodelling by acetylation and methylation  Transcriptional regulation (promoters and enhancers and Transcription Initiation complex, GAL4-UAS system)	(e66)
	II	Mechanisms of Inheritance and variation in	15
	11	Prokaryotes and Eukaryotes	Lectures
		Genetic recombination in Bacteriophages:	Lectures
		Life Cycle of lytic and lysogenic phages	
		Complementation in phages (Intra- and Inter-genic)	
		Recombination mapping – Two- and three- factor	
		crosses	
		Genetic recombination in Bacteria:	
		The processes of;	
		Conjugation, Transformation, Transduction	
		Mapping the genome by each method	
	III	Overview and cells and organs of immune system	15 lectures
		Overview of the Immune system - Innate Vs	
4	10	Adaptive Immunity	
		innate immunity* to be given as assignment/	
		presentations i) A nate micel Physical	
0.0		i)Anatomical, Physiological, Phagocytic, Inflammatory barriers	
		ii)Concept of Apoptosis vs Necrosis	
		ii) Concept of PAMP, PRR and TLR	
		Cells and organs of the immune system	
		i) Primary and secondary lymphoid organs	
		ii) Cells Myeloid cells- structure and functions	
		Lymphoid cells, NK cells	
		Recognition of antigens	
		i)Antigen-Specificity, avidity, affinity,	



			l '
		immunogenicity, antigenic variations.  ii) Antibody-Structure, Functions and variations  iii)Monoclonal and polyclonal antibodies  (HybridomaTechnique)  iv)Organization and expression of Immunoglobulin genes  v)Antigen-antibody interactions –Cross reactivity,  Precipitation  Immunoelectrophoresis, Agglutination,  Radioimmunoassay,  ELISA, Immunofluorescence	1000
Rain	IV	Antigen recognition and Effector Mechanisms Major Histocompatibility Complex i) MHC-I and MHC-II molecules ii) MHC allelic polymorphism iii) MHC restriction iv) Antigen processing and presentation-endogenous and exogenous pathways Maturation and activation of Lymphocytes  B- cell recombination, maturation, Activation and Differentiation T- cell maturation, Activation and Differentiation and T- cell receptor Immune Effector Mechanisms  Cytokines IL-1, IL-2, IL-4, IFNs and TNFs Complement i) Classical, alternate and lectin pathways and comparison ii) Biological consequences of complement activation iii) Complement fixation test Cell-mediated effector responses Cell-mediated cytotoxicity of T cells Role of TH1, TH2, TH17 and Tc cells	15 lectures
RUSLSc		DEVELOPMENTAL BIOLOGY AND	2.5 Credits
502		NEUROSCIENCE – I	60 Lectures
	I	Concepts of Developmental Biology	15 Lectures



		Basic Concepts of Development Sea Urchin: Mosaic vs. Regulative Development Dictyostelium: acquisition of multicellularity Drosophila: mutation series and early development. Amphibians and hen (chick): fate maps and chimeras. Arabidopsis as the model System Life cycle of Arabidopsis — sporophytic and gametophytic generation Formation of different organs — leaf, flower, androecium [including development of anthers, pollen grain, pollen tube etc.] and gynoecium [development of pistil - up to formation of embryo sac] Fertilization, Double fertilization and embryo development, Formation of meristems (root and shoot), seed formation fruit formation Role of Homeotic genes specifying parts of a flower Plant genome project (Arabidopsis and Oryza)	166
	II	Animal Development Amphibian development- Germ cell and Fertilization Cleavage, Morula and blastula and stem cells, Gastrulation. Chick development: Germ cells and Fertilization Cleavage, Morula and blastula, Gastrulation. Neurulation neural induction, Neural tube formation in amphibians and Chick Organogenesis – Eye / limb Neural Crest Cells	15 Lectures
P.alu	m	Nervous system and its functional organization Embryonic development of the Brain Vertebrate nervous system: Central Nervous System Nervous system. Functional organization of the human central nervous System Subdivisions of the CNS Forebrain:cerebrum: cerebral hemispheres,cerebral Cortex functional areas, White Matter Diencephalon.; The midbrain ,the Pons,the Medulla Oblongata: The Brain-Stem Cerebellum The spinal Cord Limbic System and the Reticular formation	15 Lectures
	IV	Cellular organization and communications in the nervous system	15 Lectures



		Chemical Basis of Neural transmission- Introduction Ionic basis of Resting Membrane Potential: Donnan's equilibrium experiments, Nernst's Potential Goldman's equation, Sodium –Potassium pump Action Potential & propagation of Action Potential Synaptic potential and synaptic integration [Electrical and Chemical Synaptic Potential] Excitatory Postsynaptic Potential (EPSP), Inhibitory PostSynaptic Potential (IPSP) Neuro – muscular junctions Synapse and synaptic transmission Synapse: Structure, Types – chemical and electrical, Neurotransmitters – General Introduction Biosynthesis, physiological role, pharmacological significance, (examples of one agonist and one antagonist for each Neurotransmitter mentioned below Acetylcholine (Nicotinic and muscarinic receptors), Dopamine (D1 and D2 receptors), GABA and Glutamate, Neuropeptide (Endorphin and Enkephalin).	660
RUSLSc 503		BIOTECHNOLOGY AND GENETIC ENGINEERING -I	2.5 Credits 60 lectures
Rain	I	Fermentation technology – Principles  History and development of Food & Fermentation Technology *PresentationFermentation technology & Instrumentation *Presentation  Principles of microbial growth, Screening (primary & secondary) Strain improvement (mutation & selection using auxotrophy & analogue Resistance.  The Bioreactor / Fermenter – Types & accessories (Stirred tank & Airlift)  Media design for fermentation (include molasses, corn steep liquor)  Downstream processing (use ex of Penicillin and an enzyme? for cell Disruption)	



	1	I	
		Instrumentation: Principles and technique of Centrifugation, Spectrophotometry and chromatography.	
	II	Fermentation technology - Food and Beverage  Production Batch vs Continuous fermentation Technological aspects of industrial production of Cheese Alcoholic beverages – Beer, wine Vinegar Single Cell Protein Mushroom, Yoghurt.  Food quality assurance: Regulatory & social aspects of food biotechnology	1666
	<u>III</u>	Gene Cloning – Principles	
Rain		Introduction to the history of Gene cloning *Presentation  Methods in Molecular Biology: Molecular cloning methods  Cutting and joining DNA molecules: DNA ligase, Homopolymer tailing, Adaptors, Linkers, Use of Alkaline Phosphatase.  Role of Restriction enzymes, Type I, II, III, patterns of DNA cutting by restriction enzymes.  Restriction Mapping – concept and numerical problems.  Vectors: The cloning vehicles  Vectors for gene cloning ( Plasmids, Bacteriophages as vectors example M13 vector, cosmid as vector).	
		Plasmids and other advanced vectors. pBluescript II.  Viral vectors – Adenovirus and Lentivirus	
		Expression of Insulin and somatostatin gene in <i>E.coli</i>	



		using pBR322.	
	<u>IV</u>	Gene Cloning – Technology	
		Cloning of genes	
		Isolation of cloning vectors, selection of gene cloning organisms, isolation of desired DNA to be cloned.	00
		Identifying a specific clone with a specific probe, construction of recombinant DNA, transformation,	16.0
		culture and isolation of recombinant DNA from non recombinant one.	
		Chromosome walking, jumping and painting and Shotgun cloning. Making genomic and cDNA libraries	
		in E. Coli.	
		cDNA technology	
		Isolation of mRNA, cDNA synthesis, cloning of	
		double stranded cDNA in plasmid or phage vector,	
		screening a library with nucleic acid probe to find a clone.	
		Polymerase chain reaction: An alternative to cloning	
		(Method, limitations of PCR, Application of PCR,	
		Reverse transcriptase PCR)	
		Methods of expressing cloned genes	
00/		Expression vectors with examples	
		Screening and selection of the desired clone:  i) Immunological method	
		ii) Nucleic acid hybridization method	
		iii) Hybrid arrest and Hybrid release method(HART and HRT)	



RUSLSc 504		ECOLOGY, CONSERVATION BIOLOGY, ASSESSMENT AND MANAGEMENT-1	2.5 Credits 60 Lectures
	I	Introduction to Fundamentals of environmental science	15 Lectures
		Structure of Ecosystem- Biosphere  concept of biotic communities- food chain, food web, Ecological Pyramids, Trophic categories i.e.  Producer Consumer, Detritus feeders and decomposers.  Mutually supportive relationships as in interspecific interactions eg. Symbiosis, Commensalism  Competitive relationship - Ecological Niche, Resource partitioning with eg.  Abiotic factors with suitable eg., Optimum zones of stress  Limit of Tolerance- Law of limiting factor  Population Dynamics: - S and J shaped growth	100
		curve, r and k selected species with example  BioGeochemical cycling C, N, P,S,O, H ₂ O Primary succession (soil formation).	
Pain	II	Basic introduction about Pests, Pesticides and Environm ent Pesticide toxicity: Bioaccumulation and Biomagnification and Bioremediation of OP pesticide, persistence, Resistance and pollution health of farmers. Biological pest control: predators, parasites, and pathogens. Genetically Engineering and pest control Bioremediation of OP pesticide: using Bacillus Sps. (eg. Malathion Pesticide) Phytoremedian of Organochlorine pesticide (Chloropyrifos) using plants Pesticide regulation: eg. Endosulphan issue.	
	III	Toxicology Management	



		Toxicology: Basic concepts, toxicity and its impacts, industrial toxicants and hazardous materials, toxic and hazardous waste management, measurement of toxicity (LC50, LD50 and ED50), TLM and lethality studies, *Only in brief.  Limitation of Toxicological studies: Comparison of animal toxicological models and Toxicity in Humans with an example  Human clinical trials: Concept of Clinical trial phases - I, 2, 3 and 4. Ethical issues of clinical trials: e.g.  Thalidomide / Human Papillomavirus Vaccine trials	660
	IV	Sustainable Development SDG, Ecological and economic growth factor for sustainable development, integrating Environmental concerns in economic decisions Economic cost of environmental degradation. Costs benefit analysis Awareness of citizen on environmental legal provisions to protect the environment	
Course Code/ Unit	Unit	Course / Unit Title	Credit/ Lectures
		PRACTICALS	Credits 1.5, Lectures-60
RUSLScP 501	I	PRACTICALS  Genetics and Immunology - I  Experiments to be performed by students  1. Extraction of chromosomal DNA from chicken liver / goat spleen  2. Streak plating of saliva on two different media  3. Viable count for enumeration of bacteria by -Bulk seed method  4. Viable count for enumeration of bacteria by -Surface spread method  Demonstration experiments:  a) Study of Drosophila mutants from specimen / slides / photographs  Study of UV-Visible Spectrophotometer  *Video presentation and GD  Immunology	· · · · · · · · · · · · · · · · · · ·



	<ol> <li>Study of ABO Blood groups and quantitative Coomb's Test.</li> <li>Study of Isohemagglutinin titre in blood.</li> <li>Quantitative Widal Test.</li> <li>Demonstration experiments:         <ul> <li>Dissect and expose the lymphoid organs of rat / photograph</li> <li>Study of Thymus, Spleen, and Lymph node tissue sections</li> <li>Observation of Blast cells in bone marrow of any mammal from slides / photographs.</li> </ul> </li> </ol>
RUSLScP	DEVELOPMENTAL BIOLOGY AND Credits -1.5,
502	Animal developmental Biology  1) Temporary mount of chick embryo and its developmental stages.  2) Cytochrome C- oxidase activity in a developing chick embryo.  Plant Developmental Biology  1) Root and shoot development in sections of plant.  I,C,T,R. eg. Scoparia sps /any other role of GA as a hormone in seed germination. C,T  3) Study of Root and shoot meristematic tissues in plants and significance of the various plant hormones.  (.Identification)  Neurobiology
Roll	1)Differential staining of white and grey matter of the vertebrate brain. 2)Dissect & display of Nervous system in Invertebrates — earthworm/cockroach or any other suitable animal C,T,R 3)Dissect & display of Nervous system in vertebrates — Hen brain or any other suitable system C,T, 4) Identifications: Permanent slides/photograph of: C,R  a)Medullary nerve fibre: b)TS of Spinal cord c)Hodgkin and Huxley model



	d) Electron micrographs of neural tissue <u>Demonstration Experiments</u> Study of the Nervous system of <i>Sepia</i> with special reference to Giant axon and stellate ganglia T,C,R.  Mammalian brain – eg. Goat brain	
RUSLScP 503	BIOTECHNOLOGY AND GENETIC ENGINEERING I	Credits -1.5, Lectures-60
Rain	1. Extraction of enzyme: (Amylase from sweet-potato / salivary amylase /egg white lysozyme or any other convenient enzyme)  2. Purification of enzyme: Above enzyme extract used for purifying by salting-out method  3. Determination of - i) enzyme activity ii) specific activity  4. Determination of the effect of pH and Temperature on Enzyme activity (Amylase / any other convenient enzyme).  5.Determination of the Km of amylase/any other convenient enzyme.  6.Immobilization of enzyme by Sodium Alginate method (Amylase/ any other convenient enzyme)  7.Enzyme activity staining/ Zymogram of amylase using starch agar plates.  8.Non-denaturing Polyacrylamide Gel Electrophoresis of Serum proteins / Saliva / Egg white any other suitable sample/Amylase	
RUSLScP 504	ECOLOGY, CONSERVATION BIOLOGY, ASSESSMENT AND MANAGEMENT-1	Credits -1.5, Lectures-60
	1. Identification of minimum 5 plants and animals	



that form mangrove ecosystem, pneumatophores vivipary adaptations eg., <i>Kandelia kandel</i> , <i>Heritiera littoralis</i> 2. Visit to mangrove  3. Study of fecundity from the given sample of freshwater/marine fish  4. Isolation and culturing of <i>Rhizobium</i> from the given sample.  5. Analysis of soils types for pH, moisture and give significance  6. Water analysis for physicochemical characteristics:  DO, BOD,COD, Salinity (compare with Toxicity Limits)  7. Vegetation studies by Quadrat Methods their analysis during biodiversity field visit  8. A visit to aquatic ecosystem and methods for water and plankton collection/ Plankton identification and quantification from river / lake water samples
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

# **References:-**

	RUSLSc 501
	<u>Units I and II Genetics</u>
1.	Principles of Genetics bySnustad and Simmons 4 th edn. John Wiley and sons 2006.
2.	Genetics; A Molecular approach by Peter Russel 2 nd edn. Pearson 2006.
3.	Genetics; AMendelian approach by Peter Russel 2 nd edn. Pearson 2006
4.	Introduction to Genetic Analysis by Griffiths et al 8 th ednFreeman and co. 2005
5.	Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.
6.	Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman 7 th edn., Blackwell publication, asianedn Oxford publishers 2007
7.	Concepts of Genetics W. S. Klug and M. R. Cummings 7 th edn. Pearson 2003.
8.	Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8 th edn. Pearson



	2006.
9.	Human Molecular Genetics by Tom Strachan and Andrew Read, 3 rd edn. Garland Science pub. 2004.
10.	Principles of Genetics by R. Tamarin 7 th edn 2002
	Units III and IV Immunology
11	Immunology 7 th edn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2018.
12	Immunology: The immune system in health and disease 6 th edn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.
13	Cellular and Molecular Immunology, 2 nd edn. A. K. Abbas, A. H. Litchman, 5 th edn 2000.
14	Basic Immunology: Functions and disorders of the immune system, 2 nd edn. A. K. Abbas, A. H. Litchman, 2 nd edn 2004.
15	Roitt's Essential Immunology 11 th edn. Blackwell publication 2006.
16	Immunology 7 th International edn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey Elsevier publication, 2006.
17	An Introduction to Immunology C. V. RaoNarossa Publishers 2002
18	Gene cloning and DNA analysis T.A. Brown Wiley Publishing House.
19	Immunology by David Male Jonathan Brostoff David Roth Ivan M. Roitt   1 January 2012
RUS	LSc 502
	UNIT I and II Developmental Biology (Latest editions recommended)
C	1. Instant Lecture Notes- Developmental Biology
	R.M.Twyman, Viva Books Private Limited, New Delhi, Latest Edition (First Edition – 2001)
	2. Developmental Biology
	T.Subramaniam, Narosa publishing House, Mumbai, Latest Edition (First Edition-2002)  3. Principles of Development L. Wolpert, R. Beddington, J. Brockes, T. Jesell and



- P. Lawrencel Oxford University Press.
- 4. Developmental Biology. W.A. Miller Springer Verlag.
- 5. Molecular Biology 3rd Ed.,
- H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and J. Darnell. Scientific American Book, W.H. Freeman, N.Y.
- 6. Molecular Biology of the Cell 3rd Edition. B. Alberts, D. Bray, J.Lewis, M. Raff, K. Roberts and J.D.Watson. Garland Publishing Inc., N T and London.
- 7. Plant Cell and Tissue Culture I. Vasil and T.A. Thorpe. Kluwer Academic Publishers.
- 8. Practical Zoology 2nd Edition. K.C. Ghone and B. Manna. New Central Book Agency Publishers.
- 9. Developmental Biology 4th edition. S.F. Gilbert. Sinauer Associates Inc. Publishers.
- 10.Pollen Analysis 2nd edition. P.D.Moore, J.A.Webb and M.E. Collinson Blackwell Scientific Publishers.
- 11.Pollen Biology A laboratory manual (1992) K.R. Shivanna and N.S. Rangaswamy, Narosa Publishing, Calcutta.
- 11.Developmental Biology 2nd edition, L.W.Browder, Saunders College Publishing Co.
- 12.An Introduction to Embryology 5th Ed B. I. Ballinsky' Saunders, College Publishing Co.
- 13.Developmental Biology Patterns, Problems and Principles. J. W. Saunders.
- J. R. MacMillan Publishing Co.,
- 14. An Introduction To the Embryology of Angiosperms.
- P. Maheshwari.



- 16. An Atlas Of Descriptive Embryology  $2^{\rm nd}$  ed. W.W.Mathews. MacMillan Publishing Co.
- 15. Essential Developmental Biology A Practical Approach Ed C.D. Stern and P.W.H. Holland. Oxford University Press

#### UNIT III and IV - Neuroscience ( Latest Editions Recommended).

- 17. Neuroscience: Exploring the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996)
- 18. Neurobiology 3rd edition G.M. Shepherd Oxford University Press.
- 19. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall International.
- 20. Instant Notes Neurosciences, A.Longstaff Viva Books Pvt Ltd., New Delhi, 2002
- 21. TextBook Of Medical Physiology A.C.Guyton and J.E.Hall Saunders College Publishers.
- 22. Elements Of Molecular Neurobiology C.U.M. Smith J Wiley and Sons Publishers, N.Y.
- 23. An Introduction to Molecular Neurobiology Z.W. Hall Sinauer Associates Inc. Publishers.
- 24. Ion Channels Molecules in Action D. J. Aidley and P.R. Stanfield. Cambridge University Press.
- 25. Comparative Neurobiology J. P. Mill Edward Arnold Publishers.
- 26. Physiology Of the Nervous Systems D Ottoson, McMillan Press.

#### **RUSLSc 503**

- 1. Principles of gene manipulation and Genomics by Primrose and Twyman, 7th edition, Blackwell publishing (2006)
- 2. Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd
- 3. Molecular Biology by Robert Weaver, second edition Pub McGraw Hill (2003)
- 4. Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009)
- 5. Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and Dist Pvt Ltd.



- 6. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd.
- 7. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall.
- 8. Industrial Microbiology. A H PATEL (2005) Macmillan India

#### **RUSLSc 504**

- 1. Misra and Pandey (2011), "Essential environmental studies", Ane Books
- 2. Martens (1998),"Health and climate change ", Earth Scan
- 3. Saxena (1998), "Environmental Analysis of soil and air", Agrobotanica
- 4. Chakraborti (2005),"Energy efficient and environment friendly technologies for rural development ", Allied Publishers
- 5. Dash M C (2004) "Ecology, chemistry and Management of environmental Pollution", Mac Millan India
- 6. Nayak ,Amar(2006) "Sustainable sewage water Management ",Mc Millan India
- 7. Dolder, Willi (2009), "Endangered animals, Parragon
- 8. Gupta P K (2000)," Methods in environmental Analysis ",Agrobio (India)
- 9. Fumento, Michael (2003),"Bioevolution: How biotechnology is changing our world", California encounter Books
- 10. Kapur (2010) "Vulnerable India", SAGE
- 11. Jacob, Miriam(2004)," Silent Invaders", Orient Longman
- 12. Mc Cafferty (1998), "Aquatic Entomology", Jones and Barlett
- 13. Subramnyam (2006), "Ecology", 2nd ed. Narosa
- 14. Dilip Kumar, Rajvaidya (2004)," Environmental Biotechnology ", APH
- 15. Sharma and Khan (2004), "Ozone Depletion and Environmental Impacts",

Pointer publishers







# **Modality of Assessment**

Theory Examination Pattern: Paper I to IV.

#### C) Internal Assessment- 40%- 40 Marks

Sr No	<b>Evaluation type</b>	Ma
		rks
1.	Written Test	20
2.	Presentation on topic from syllabus / Quiz / Open book test	10
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10
	TOTAL	40

## D) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.



## **Semester End Theory Examination:**

Duration - These examinations shall be of **2hours** duration. Theory question paper pattern:

# **Paper Pattern:**

Questi on	Options			Marks	Based on
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III
			Total	60	



#### **Practical Examination Pattern:**

C) Internal Examination: 20Marks

Particulars	
Journal	05
Experimental	15
tasks	
Total	20

D) External Examination: 30 Marks Semester End Practical Examination:

Particulars	Paper
Main question to	15
perform experimental	C
task/Estimation/	
Dissection/	0,
Statistical analysis.	
Identifications	10
Total	30



#### **Overall Examination & Marks Distribution Pattern**

#### Semester V

Cour se	501			502			5			5			Gr an
				502			$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$			0			d
							3			4			To
							~						tal
	Int	E	T	In	Ex	T	I	E	T	I	E	T	
	er	X	ot	ter	ter	ot	nt	X	0	n	X	0	6
	nal	t	al	na	na	al	er	t	t	t	t	Ų,	
	l IIai	l	aı		l	41		l				7,00	
		e		1	l		n	e	a	е	e	a	
		r					al	r	1	r	r	l	
		n						n		n	n		
		a						a		a	a		
		1						1	. C	l	l		
Theo	40	6	1	40	60	1	4	6	1	4	6	1	400
ry		0	0			0	0	0	0	0	0	0	
			0			0			0			0	
Pract	20	3	5	20	30	5	2	3	5	2	3	5	200
icls		0	0			0	0	0	0	0	0	0	



# **Course Title:**Genetics and Immunology-II

# Academic year 2021-2022

COURSE OUTCOME	DESCRIPTION
OUTCOME	.10
	Students will gain insights about following;
CO 1	Explain the Life Cycle of <i>Neurospora</i> . Elaborate on genetic recombination in fungi. How mapping is done by Tetrad analysis is evaluated Compare tetrad analysis in <i>Neurospora</i> and Yeast. Compare the role of two and three factor crosses in mapping the genome. Explain the role of coefficient of coincidence and interference in recombination.
CO 2	Justify the role of prokaryotic Transposable elements as natural biological mutagenic agents and explain their significance. How induced mutations are created using Site-Directed mutagenesis and use of Cassette mutagenicity in mutational analysis.
CO 3	Understand the Recombinant DNA technology by comparing the mode of action of different types of restriction enzymes and use of DNA joining enzyme. Explain the role of vectors, plasmid and phage in DNA technology. Explain principle, technique and applications of PCR. Evaluate the aim and applications of the Human Genome project
CO 4	To classify Hypersensitivity Reactions, explain them with examples, analyse these conditions, to compare types of immunodeficiency disorders, explain with examples, and suggest ways to alleviate them, to categorize types of vaccines, classify passive and active immunization.
CO 5	To explain generation of tolerance, different ways by which it is



	achieved, to relate lack of tolerance to autoimmunity, explain types of autoimmune conditions, to explain immunology in transplantation, classify types of grafts, analyze events of graft rejection, to compare methods of analysing histocompatibility.
CO 6	To evaluate the immune response to tumors, classify types of tumor antigens, to analyse the tumor evasion tactics and demonstrate the application of different therapies against tumors.
	RUID
2	
Rall	



# Course Title: Developmental Biology and Neurosciences- II Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Molecular basis of Growth and differentiation, totipotency, pluripotency plant tissue culture and Animal Tissue Culture
CO 2	Sensory organs with their pathways for interpretation of the environmental stimuli and relating to memory, consciousness, perception. in a different states referred as Neural Disorders



# Course Title: Biotechnology and Genetic Engineering- II

# Academic year 2021-2022

COURSE OUTCOME	DESCRIPTION
OUTCOME	100
	Students will gain insights about following;
CO 1	Design a complete protocol for production of enzymes, differentiate between types of enzyme immobilization techniques and their applications, Design a complete protocol for production of biopharmaceuticals, vaccines, monoclonal antibodies, antibiotics and vitamins.
CO 2	To explain plant tissue culture, its media and techniques used in commercial production of crops, used in secondary metabolite production, micropropagation. To explain Animal Tissue culture techniques, media, primary culture, secondary culture, maintenance of cell lines. To explain the applications as models for toxicity testing, drug development, genetic screening.
CO 3	Explain the use of prokaryotic, eukaryotic and viral vectors in molecular biology. Explain the molecular tools for studying genes and gene activity. Compare agarose gel electrophoresis and poly-acrylamide gel electrophoresis in separation of proteins. Design an experiment for separation of proteins by two different methods.
CO 4	Understand the different techniques of molecular biology and how its applications are important in agriculture, Medicines or pharmaceuticals.
CO 5	Explain applications of recombinant DNA technology in creating transgenic animals and transgenic plants.
CO 6	Explain the applications of bioinformatics.



# Course Title: Ecology, Conservation Biology, Assessment and Management- II Academic year 2019-20

COURSE OUTCOME	DESCRIPTION
	Students will gain insights about following;
CO 1	Understand the Global carrying capacity, depleting the quality of water, air, land, mineral use, salinisation of lands. citizens awareness of Laws, role of NGO towards impact on environment towards development processes.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
		T.Y.BSc. LIFE SCIENCE (Theory)	
RUSLSc601		Genetics and Immunology II	2.5 Credits Total 60 Lectures
Rakki	I	Recombination in Eukaryotes:  Genetic recombination in Fungi —  Life Cycle; recombination in Neurospora and mapping by Tetrad analysis. Tetrad analysis in yeast.  Genetic recombination in Drosophila —  Life Cycle; Recombination — Mapping the genome by two and three factor crosses, coefficient of coincidence and interference.  Genetic recombination in Humans —  Somatic cell Genetics: Use of cell hybrids and hybridomas for gene mapping;  Mutational Variation:  Natural biological mutagenic agents — Prokaryotic	15 Lecture



		Transposable elements and their significance Induced mutations - Site-Directed mutagenesis using Oligomers and 'Cassette mutagenicity'; Mutagenicity testing – Ames test.	
	II	Tools and Techniques in Molecular Biology Recombinant DNA technology:  - Restriction Enzymes – General nature of action Major categories based on type of cut, two typical examples each and recognition sites  - Restriction mapping  - DNA Joining enzymes (Ligases)  - Vectors in genetic engineering – i) pBR322. ii) Phages (λ)  - Transformant screening by gene inactivation method  - Strategy for cloning Somatostatin in E. coli Applied genetics: i.) Polymerase Chain Reaction and its applications ii) The Human Genome Project and beyond: aims, major features and applications iii) Genetically modified organisms	15 Lecture
P.alu	III	Hypersensitivity, Vaccines and Immunodeficiency Hypersensitivity: Gell and Coombs classification: Type I: Ag-Ab reactions viz. RIST and RAST Type II: Agglutination to be included Type III: Immunoflourescence, ELISA Type IV: Tuberculin test Vaccines: Passive immunization i) Preformed antibodies and problems ii) Use of Chimera / humanized antibodies. Active immunization (Different methods used): i) Whole organisms (attenuated vs. inactivated ex. Polio) ii) Purified macromolecules (Polysaccharide, toxoid and recombinant antigen vaccines)	15 Lecture



		iii) Peptide vaccines	
		iv) DNA vaccines	
		Immunodeficiency	
		Use of nude mice, SCID mice in experiments	
		i) X-linked agammaglobulinemia	
		ii) DiGeorge syndrome	
		iii) Combined-SCID (Severe Combined	
		Immunodeficiency)	20
		iv) Phagocytic- Chronic Granulomatous Disease	
		v) AIDS (Acquired ImmunoDeficiency Syndrome)	
	IV	Transplantation, Tumour Immunology, Tolerance	15 Lecture
		and Autoimmunity	
		Transplantation	
		i) Types of grafts	
		ii) Tissue typing (serological and MLR)	
		iii) Mechanisms of graft rejection	
		iv) Graft vs. host disease w.r.t. bone marrow or	
		cornea	
		Tumor Immunology:	
		Role of the immune system, Cell mediated and	
		humoral responses,	
		i) NK cells and macrophages,	
		ii) Tumor specific antigens,	
		iii) Immunological surveillance,	
		iv) Immunological escape and potential for	
		therapy.	
	~(	Tolerance	
	(0)	Mechanism of T cell and B cell tolerance	
		Immunology of pregnancy	
		Role of T regulatory cells	
00,		Autoimmunity	
		i) Mechanisms for induction (Aetiology)	
		ii) Types of Autoimmune diseases-organ specific	
		and systemic.	
		Eg. Myasthenia gravis, Graves' disease, SLE	
		and Multiple sclerosis	
RUSLSc602		Title: Developmental Biology and Neuroscience II	2.5 Credits



			Total 60 lectures
	I	Cellular aspects of development:  i) Totipotency e.g. Carrot phloem, animal cell nuclei, stem cells PGD  ii) Pluripotency  iii) Multipotency e.g. Neural crest cells or Hematopoietic cells  iv) Determination e.g. Drosophila imaginal disc  v) Transdetermination e.g. Drosophila imaginal disc  Differentiation. E.g. Neural crest cells or hematopoietic cells  a. Differentiation as a change in gene expression.  (e.g. β globin gene expression)  b. Induction – e.g. Formation of lens in the eye  Molecular basis of growth and differentiation: Genes in early development (eg. Drosophila) Maternal genes, Segmentation genes, Homeotic – Drosophila.  Cell cycle and its control.	15 Lecture
23/1/2	II	Applications of developmental biology - Assisted Human Reproduction: Congenital abnormalities - Aging- Theories of Aging - Regeneration in animal world, Regeneration of Salamander limb (dedifferentiation), Wound healing VS Regeneration - Cancer- Types of Cancer, Causes of Cancer, Angiogenesis, Oncogenes, Tumor suppressor genes, Treatment strategies for Cancer - Fundamentals of Stem cell research. Examples: eye/skin/leukaemia research.	15 Lecture
	III	Sensory and motor system Pheripheral Nervous system - Human Sense organs: receptors, receptor mechanisms and pathways- Introduction - Visual system: Vision - structure of the eye, retina, photoreceptors (rods and cones), phototransduction,	



		binocular vision, visual pathway (flow chart only – LGN to visual cortex), 1.2d light & dark adaptation, colour vision  - Auditory System: Structure of the ear, cochlea and organ of corti receptors. Mechanism of transduction, Auditory pathway: (MGN to audio cortex)  Diagrammatic representation only.  - Vestibular System: Structure of the vestibular labyrinth, maculae and cristae. Mechanism of transduction.  - Chemosensory system: Olfactory and Gustatory receptors structure.  - Skin as sense organ: somatic receptors - Types of mechano- receptors, pain reception & Pain management (example analgesic effect by prostaglandin inhibition - aspirin)  - Structure of Muscle, Types of muscles, Molecular basis of Muscle contraction  - Reflexes: Simple reflex arc, mono and poly-synaptic reflexes, stretch and knee-jerk reflex, Crossed –	1666
Palu	IV	Neurobiological basis of behaviour and Diseases  - Short term memory and Long-Term Memory  - Addiction and Reward pathway in Brain, Narcotic drugs  - Abnormal Behaviour and the Brain, Mood disorders  -Schizophrenia- Positive and negative symptom  Duchene's muscular Dystrophy  Alzheimer's disease  Huntington's Disease	15 Lecture
RUSLSc603		Biotechnology & Genetic Engineering II	2.5 Credits Total 60 Lectures



	I	Fermentation technology – Enzyme and Pharmaceuticals Production	15 Lecture
		<ul> <li>Enzyme Technology</li> <li>i) Enzyme production ex. Amylase (bacterial &amp; fungal)</li> <li>ii) Immobilized Biocatalyst (method of immobilization, applications – biosensors)</li> <li>Application of fermentation technology in medicine</li> <li>i) Production of antibiotics (Penicillin)</li> <li>ii) Vitamins (Vit B12)</li> <li>iii) Vaccines (polio, HbsAg)</li> <li>iv) Monoclonal antibodies</li> <li>v) Biopharmaceuticals (Insulin / IFN-γ)</li> </ul>	1000
	II	Tissue Culture biotechnology	15 Lecture
	Si	Plant Cell Culture and Animal Cell Culture  i) Animal Cell Culture— Laboratory setup, Media, Basic techniques (Disaggregation of tissue and primary culture, maintenance of cell lines)  ii) Plant Cell culture— Media, Basic techniques (callus and suspension culture, organogenesis, & somatic embryogenesis, Protoplast isolation and fusion)  Application of fermentation technology— Agriculture  i) Secondary metabolites from plant tissue culture. Eg: Artemisinin, Diosgenin.  ii) Biopesticides— bacteria (B. thuringiensis), Virus iii) (Polyhedrosis virus) and fungal (Trichoderma)	
69/	III	Genetic Engineering Manipulating DNA in Microbes, plants and Animals  i) Cloning vectors in Prokaryotes: BAC (Bacterial Artificial chromosome)  ii) Cloning vectors in Eukaryotes:  a) Yeast - Natural yeast plasmids and Yeast artificial chromosome (YAC);  b) Plants - Ti plasmid;	15 Lecture



		c) Animals – SV40 and Baculovirus.	
		iii) Viral vectors – Adenovirus and Lentivirus	
		Molecular tools for studying genes and gene	
		activity	
		Molecular separation for genes and protein:	
		Separation of DNA and proteins by Gel	
		electrophoresis (Agarose gel electrophoresis, Poly-	_
		acrylamide gel electrophoresis, Two-Dimensional	,0,
		Gel Electrophoresis)	000
		Using Nucleic acid Hybridisation	60
		Analysis of specific nucleic acids in complex mixture	
		(Southern blotting, Northern blotting,)	
		i) Forensic uses of DNA finger printing and DNA	
		Typing	
		ii) DNA sequencing by Sanger's, Maxam and	
		Gilbert's methods, concept of automated gene	
		sequencing	
		iii) DNA Markers: SNP (Single Nucleotide	
		Polymorphism), VNTR (Variable number Tandem	
		Repeats), RFLP (Restriction Fragment Length	
		Polymorphism), AFLP (Amplified Fragment	
		Length Polymorphism)	
		Microarray	
		In Situ hybridization	
	IV	Applications of recombinant DNA technology and	15 Lecture
		Bioinformatics	
		Applications of recombinant DNA technology	
		i) Knock out transgenic animals – Use of Zinc	
		finger and CRISPR-CAS9	
		ii) Knock in transgenic animals	
		iii) Transgenic plants: Bt cotton and herbicide	
0,0		resistant gene	
		iv) Xenopus oocyte as an expression system	
		v) Giant Mouse (MMT promoter=growth hormone	
		fusion gene)	
		vi) Drosophila (using p element mediated technique-	
		enhancer trap)	
		vii) Challenges in recombinant DNA	
		technology:	
		technology.	



		viii) Applications in industry – Medical/pharmaceutical, agricultural ix) Applications in basic research – Intellectual property rights and open source biotechnology x) Gene therapy and stem cell technology of neurological disorders.  Bioinformatics i) Biological databases ii) Sequence annotation and comparison iii) Multiple sequence alignment iv)Phylogenetic trees.	1000 1000
RUSLSc604		ECOLOGY, CONSERVATION BIOLOGY, ASSESSMENT AND MANAGEMENT-II	2.5 Credits Total 60 lectures
Rains	I	Environmental Degradation Urbanization in developing countries. Urban crisis, suburban sprawl, land use planning, urban open spaces, Global warming, Morbidity caused by air pollution, diseases of the future (cancer & respiratory diseases). Urban growth challenges: Water and waste management, Water shortage, using less water, pricing of water. Impact of urban areas on the environment Rural environment: Availability of freshwater, current status of ground water resource. Wetlands and its significance; Ramsar Sites Status of any two Indian Rivers, Eg.Ganga and Godavari or any other. Terrestrial Biome of the World, Forest types, Flora & Fauna of India Soil types and Succession, Endangered, Rare Extinct species-RED data Book. Management of Toxic waste, solid waste and agricultural waste: Economics of recycling of plastic / Hazardous waste.	15 Lecture



		Management of domestic waste.	
		Toxic Waste Trading: An environmentally	
		destructive	
		trade activity.	
		-	
	II	Energy	15 Lecture
		- Energy from fossil fuel	
		Eg. Coal, Natural gas, Policy involved in	48
		supply and demand.	00
		<b>Energy from Nuclear Power</b> - how it works,	
		Advantage and disadvantages, policy involved.	
		ravantage and disadvantages, poney involved.	
		Renewable Energy-	
		Solar Energy Eg. Solar Heating of water and space,	
		solar production of electricity using Photovoltaic cells	
		- Geothermal Energy	
		- Hydropower Energy- Dams and Large Reservoirs,	
		advantages and disadvantages.	
		- Tidal Energy	
		- Wind Energy	
		- Biomass Energy	
		- Biofuel for transportation.	
		Policies Involved for Renewable Energy	
		Concept of carbon Sequestration, Carbon credit,	
		Carbon Footprints.	
	III	Impact of Developmental Projects on	15 Lecture
		Environment	
		<b>Environmental Impact Analysis of a Development</b>	
		Project:	
		Environmental Audit: protocols and data collection	
0,0		and analysis- Case studies development projects	
		Methodology and approach for public participation in	
		Environmental & development decision making.	
		Example:-	
		Plachimada struggle, Narmada Bachao andolan,	
		Chipko andolan, Aarey Metro car shade project.	
		Regulatory requirements and advantages and	
		disadvantages of Public participation	



		Eg. Jaitapur Nuclear Power Project or Enron- Dabhol power project or any other.	
	IV	Safety of Environment: Environment, Nuclear proliferation and war: Eg. use of Agent orange in the Vietnam war. Environment Protection Agency- Environmental Impact Assessment International cooperation - Treaties, planning for future. Vision of the world 2040 Bhopal Gas Tragedy; lessons after 26 years Perspectives and concerns of citizens. Industrial safety and health hazards: Identification of potential safety and health hazards in industrial and development projects, reduction strategies policies and legislation, international and national perspective, Safety Standards and management systems, ISO System 18000 to the latest.	15 Lecture
Course Code/ Unit	Unit	Course / Unit Title	Credit/ Lectures
		PRACTICALS	
RUSLScP60	S.	Genetics and Immunology II	Credits -1.5, Lectures-60
P.Sill	1 2	Genetics Estimation of bacteriophage titre by plaque assay Effect of UV light on microorganisms Determination of percent viability of an E. coli culture after UV exposure- in the absence of light repair Isolation of antibiotic resistant / auxotrophic mutants using Replica plate technique.	
	3	Immunology Ouchterlony test for Immunodiffusion (Qualitative)	



		Mancini test – Single Radial Immunodiffusion	
	4	(Qualitative)	
		Agarose slide gel electrophoresis of Serum.	
	5	Demonstration experiments:	
	6	<u> </u>	
	0	Separation of Mononuclear cells using a gradient and	
		the determination of viable count of the same.	
		SDS- PAGE for separation of IgG subfraction	
		Qualitative ELISA using albumin	48
			(60
RUSLScP60		Developmental Biology and Neuroscience II	Credits -1.5, Lectures-60
		Plant Developmental Biology	
	1	Effect of temperature on cell viability in pollen	
		grains/yeast using Trypan blue/ acetocarmine.	
	2	Effect of boron / calcium on pollen tube germination	
		in <i>Vinca rosea</i> or any other suitable sample.	
		Demonstration experiments:	
	3	Plant Tissue Culture: Initiation of plant tissue culture	
		from germinated chickpea/any other suitable source.	
	4	Animal Developmental Biology	
		Live Cycles and Developmental stages of C.elegans /	
		Dictyostelium / Drosophila / Danio.	
	5	Imaginal discs of <i>Drosophila</i> .	
	6	Regeneration in earthworm / any other suitable	
		system / hydra (using permanent slide / photographs)	
		Neurosciences	
	7	Temporary mounts:	
		Cornea of prawn / Statocyst of prawn/ Columella of	
	5	bird / Ventral Nerve cord of Earthworm	
	8	Making clay model of Invertebrate and Vertebrate	
	0	CNS	
		Demonstration Experiments	
	9	Stroop test.	
00,	10	Innate and Learned Behaviour in Animal	
	11	Knee-jerk reflex	
	12	Pupillary reflex.	
	13	Testing for locating the Blind Spot in the retina	
RUSLScP60		Biotechnology & Genetic Engineering II	Credits:1.5, Lectures:60
	1	Thin layer chromatography of linids/plant	
	1	Thin layer chromatography of lipids/plant alkaloids/any other suitable extract	
		alkalolus/ally office sulfacte extract	



	2	Bioassay of antibiotic / plant extract for antibacterial	
	_	activity.	
	3	Assay of fermentation product / Substrate –	
		Estimation of:	
		a) Alcohol/Acetic/lactic acid	
		b) Sugar	
	4	Extraction of plasmid DNA & Agarose Gel	
	•	Electrophoresis of plasmid DNA/Restriction Digest.	.0.
	5	Bioinformatics:	-00
		Introduction to databases and: use of public domain	6,0
	6	Open source database and programs for studying	
		genomics of human / mouse, yeast/ plant/ microbes or	
	l _	any other relevant organism.	
	7	Manual annotation of DNA sequence: pUC series or any convenient cloning/expression vector followed	
		by using programmed tool	
	8	Blast search of genome sequence, Sequence	
		alignment Pairwise / multiple, construction of	
		Cladogram / phylogram	
	9	Open-ended projects:	
		Home-Wine production / Home-Vinegar production	
		from any convenient source & assay for fermentation	
		products	
		a) Culturing & biomass estimation of mushroom/	
		Spirulina /chlorella by cell	
		1) C	
		b)Count/dry weight and estimation of percentage total	
		protein.	
		Fingerprinting technique using electrophoresis of	
	10.	protein/DNA digest	
		GDG DAGE 34 3 11 1	
		SDS PAGE with suitable marker.	
1		Genomic DNA extraction, purification and estimation	
		by UV spectroscopy.	
RUSLScP60		ECOLOGY, CONSERVATION	Credits:1.5,
4		BIOLOGY, ASSESSMENT AND	Lectures:60
		MANAGEMENT-II	
	1	Water analysis for physico-chemical characteristics:	



		Explore • Experience • Excel
		Electrical conductivity of water, N/P/K/Sulphates/ Na/ Ca. / Estimation of Co2+ and Ni2+ by colorimetry / spectrophotometry / Estimation of Heavy metal in various samples by titrimetry or spectrometry/ Potability of the given drinking water sample by MPN. (any three of the above)
	2	Remote Sensing and Geographic Information system (GIS): Principles and its application
	3	Collection and Interpretation of weather data of Mumbai city (Satellite images and statistical analysis
	4	of weather data). Biodiversity field visit to National park / Sanctuaries/ Mangrove sites / lake / wastewater treatment plants/ Agro tourism sites.
	5	Environmental Project (Any one compulsory)  a. Environmental audit of an institution eg.  Electricity and water audit and preparing a report. /  b. Make an ecological evaluation of a local site
	O	and interpret its ecological health.  c. Make a report / Making video film on a local well-defined environmental issue along with resolving the conflict – Photographic documentation of a local environmental issue and record its progress for at least three months.
6.0.		d. Make a report and your evaluation on environmental issue/
		e. Project on a role of a chosen organism in your immediate environment or its significance to the local biodiversity.
		f. Measurement of sounds by DB meter in silent,



	g. A Survey related to environmental issues amongst the citizens: Data to be collected and analysed statistically with suggestions for environmental management.	
	Project Submission and viva.	20
Rainnai	ain Ruita Ru	
60,		



# **References:-**

RUS	LSc601
	Units I and II Genetics
1	-Principles of Genetics by Snustad and Simmons 4 th edn. John Wiley and sons 2006.
2	I Genetics; A Molecular approach by Peter Russel 2 nd edn. Pearson 2006.
3	I Genetics; AMendelian Approach by Peter Russel 2 nd edn. Pearson 2006.
4	Introduction to Genetic Analysis by Griffiths et al 8 th ednFreeman and co. 2005.
5	Genes IX by Benjamin Lewin; Jones and Bartlett publishers, 2008.
6	Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M.
	Twyman 7 th edn., Blackwell publication, Asian edn Oxford publishers 2007.
7	Concepts of Genetics W. S. Klug and M. R. Cummings 7 th edn. Pearson 2003.
8	Concepts of Genetics W. S. Klug, M. R. Cummings, C. A. Spencer 8 th edn. Pearson
9	2006.
	Human Molecular Genetics by Tom Strachan and Andrew Read, 3 rd edn. Garland
10	Science pub. 2004.
	Principles of Genetics by R. Tamarin 7 th edn 2002
	Units III and IV Immunology
1 2	Immunology 5 th edn. R.A.Goldsky, T. J. Kindt, B. A. Osborne, J. Kuby 2003. Immunology: The immune system in health and disease 6 th edn. C. A. Janeway, P. Travers, M. Walport, M. Shlomchik Garland Science Pub. 2005.
3	Cellular and Molecular Immunology, 2 nd edn. A. K. Abbas, A. H. Litchman, 5 th edn
4	2000.
5	Basic Immunology: Functions and disorders of the immune system, 2 nd edn. A. K. Abbas, A. H. Litchman, 2 nd edn 2004.
6	Roitt's Essential Immunology 11 th edn. Blackwell publication 2006.
	Immunology 7 th International edn. D. Mole, J. Bronstoff, D. Roth, I. Roitt, Mosbey
7	Elsevier publication, 2006  An Introduction to Immunology C. V. Roo Norossa Publishers 2002
	An Introduction to Immunology C. V. Rao Narossa Publishers 2002
RUS	LSc602
	Unit I and II Developmental Biology



- 1. Instant Lecture Notes- Developmental Biology, R.M.Twyman, Viva Books Private Limited, New Delhi, Latest Edition (First Edition 2001)
- 2. Developmental Biology, T.Subramaniam, Narosa publishing House, Mumbai, Latest Edition (First Edition-2002)
- 3. Principles of Development, L. Wolpert, R. Beddington, J. Brockes, T. Jesell and P. Lawrencel Oxford University Press.
- 4. Developmental Biology, W.A. Miller, Springer Verlag.
- 5. Molecular Biology 3rd Ed., H.Lodish, D.Baltimore, A.Berk, S.L. Zipurski, P.Matsudaira and J. Darnell. Scientific American Book, W.H. Freeman, N.Y.
- 6. Molecular Biology of the Cell 3rd Edition. B. Alberts, D. Bray, J.Lewis, M. Raff, K. Roberts and J.D.Watson. Garland Publishing Inc., N T and London.
- 7. Plant Cell and Tissue Culture I. Vasil and T.A. Thorpe. Kluwer Academic Publishers.
- 8. Practical Zoology 2nd Edition. K.C. Ghone and B. Manna. New Central Book Agency Publishers.
- 9. Developmental Biology 4th edition. S.F. Gilbert. Sinauer Associates Inc. Publishers.
- 10. Pollen Analysis 2nd edition. P.D.Moore, J.A.Webb and M.E. Collinson Blackwell Scientific Publishers.
- 11. Pollen Biology A laboratory manual (1992) K.R. Shivanna and N.S. Rangaswamy, Narosa Publishing, Calcutta.
- 12. Developmental Biology 2nd edition, L.W.Browder, Saunders College Publishing Co.
- 13. An Introduction to Embryology 5th Ed B. I. Ballinsky' Saunders, College Publishing Co.
- 14. Developmental Biology Patterns, Problems and Principles. J. W. Saunders. J. R. MacMillan Publishing Co.,
- 15. An Introduction To the Embryology of Angiosperms. P. Maheshwari.
- 16. An Atlas Of Descriptive Embryology 2nd ed. W.W.Mathews. MacMillan Publishing Co.
- 17. Essential Developmental Biology A Practical Approach Ed C.D. Stern and P.W.H. Holland. Oxford University Press.

## <u>Unit III and IV – Neurobiology</u>

- 1. Neuroscience: Exploting the brain M.F.Baer, B.W.Connors&M.A.Paradiso, William & Wilkins, Baltimore, Latest Edition (First Edition1996)
- 2. Neurobiology 3rd edition G.M. Shepherd, Oxford University Press.



- 3. Principles Of Neural Science. E.R.Kandel, J.H.Schwartz and T.M. Jessel. Prentice Hall International.
- 4. Instant Notes Neurosciences, A.Longstaff,
- 5. TextBook Of Medical Physiology A.C.Guyton and J.E.Hall
- 6. Elements Of Molecular Neurobiology C.U.M. Smith, J Wiley and Sons Publishers, N.Y.
- 7. An Introduction to Molecular Neurobiology Z.W. Hall, Sinauer Associates Inc. Publishers.
- 8. Ion Channels Molecules in Action D. J. Aidley and P.R. Stanfield. Cembridge University Press.
- 9. Comparative Neurobiology, J. P. Mill, Edward Arnold Publishers.
- 10. Physiology Of the Nervous Systems D Ottoson, McMillan Press

#### RUSLSc603

- 1. Principles of gene manipulation and Genomics by Primrose and Twyman, 7th edition, Blackwell publishing (2006)
- 2. Molecular Techniques in Biochemistry and Biotechnology by S Shrivastava (2010) Pub. New central book Agency (P) Ltd
- 3. Molecular Biology by Robert Weaver, second edition Pub McGraw Hill (2003)
- 4. Text book of cell and Molecular Biology by Ajoy Paul Pub Books and Allied (P) Ltd. Second edition (2009)
- 5. Cell and molecular biology by sp Vyas and Mehta (2011) CBS pub and Dist Pvt Ltd.
- 6. Industrial Microbiology. L.E.Casida (2003) New Age International (P) Ltd.
- 7. Industrial Microbiology. Prescott And Dunn's (2004) Chapman & Hall.
- 8. Industrial Microbiology. A H PATEL (2005) Macmillan India.

## **RUSLSc604**

- 1. Misra and Pandey (2011), "Essential environmental studies", Ane Books
  - 2. Martens (1998),"Health and climate change ", Earth Scan
  - 3. Saxena (1998), "Environmental Analysis of soil and air", Agrobotanica
  - 4. Chakraborti (2005),"Energy efficient and environment friendly technologies for rural development ", Allied Publishers
  - 5. Dash M C (2004) "Ecology, chemistry and Management of environmental



### Pollution ", MacMillan India

- 6. Nayak ,Amar(2006) "Sustainable sewage water Management ",Mc Millan India
- 7. Dolder, Willi (2009), "Endangered animals, Parragon
- 8. Gupta P K (2000)," Methods in environmental Analysis ", Agrobio (India)
- 9. Fumento, Michael (2003), "Bioevolution: How biotechnology is changing our world", California encounter Books
- 10. Kapur (2010) "Vulnerable India", SAGE
- 11. Jacob, Miriam(2004)," Silent Invaders", Orient Longman
- 12. Mc Cafferty (1998), "Aquatic Entomology", Jones and Barlett
- 13. Subramanyam (2006), "Ecology", 2nd ed.Narosa
- 14. Dilip Kumar, Rajvaidya (2004)," Environmental Biotechnology ", APH
- 15. Sharma and Khan (2004)," Ozone Depletion and Environmental Impacts", Pointer publishers



# **Modality of Assessment**

Theory Examination Pattern: Paper I to IV.

#### A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type					
		rks				
1.	Written Test	20				
2.	Presentation on topic from syllabus / Quiz / Open book test	10				
3.	Presentation on any journal article/ newsletter/ book review/ conference/ guest lecture	10				
	TOTAL	40				

## B) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality)

Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.



## **Semester End Theory Examination:**

Duration - These examinations shall be of **2hours** duration. Theory question paper pattern:

# Paper Pattern:

Questi on	Options			Marks	Based on		
Q1	Answer any 2 questions out of 3 questions on Unit 1 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 1 Each question of 5 marks	15	Unit I		
Q2	Answer any 2 questions out of 3 questions on Unit 2 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 2 Each question of 5 marks	15	Unit II		
Q3	Answer any 2 questions out of 3 questions on Unit 3 Each question of 7.5 marks	OR	Answer any 3 questions out of 4 questions on Unit 3 Each question of 5 marks	15	Unit III		
Q4	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	OR	Short notes on topics of all 3 units; Answer any 3 out of 5; Each of 5 marks	15	Unit I, II, III		
			Total	60			



#### **Practical Examination Pattern:**

## A) Internal Examination: 20 marks

Particulars	
Journal	05
Experimental	15
tasks	
Total	20

## B) External Examination: 30 Marks

#### **Semester End Practical Examination:**

Particulars	Paper
Main question to	15
perform experimental	-0)
task/Estimation/	
Dissection/	· O `
Statistical analysis.	
Identifications	10
Total	30



## **Overall Examination & Marks Distribution Pattern**

#### Semester V

Cour se	601			602			6 0 3			6 0 4			Gra nd Tot al
	Int	E	Т	In	Ex	T	I	E	T	I	E	T	
	er	X	ot	ter	ter	ot	nt	X	0	n	X	0	
	nal	t	al	na	na	al	er	t	t	t	t	t	
		e		1	l		n	e	a	e	e	a	
		r					al	r	1	r	r	l	
		n						n		n	n		
		a						a	C	a	a		
		l						l		<b>71</b>	l		
Theo	40	6	1	40	60	1	4	6	1	4	6	1	400
ry		0	0			0	0	0	0	0	0	0	
			0			0	4		0			0	
Pract	20	3	5	20	30	5	2	3	5	2	3	5	200
icals		0	0			0	0	0	0	0	0	0	

*****